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Abstract

Computational comparison is made between
two feature selection approaches for �nding a
separating plane that discriminates between
two point sets in an n-dimensional feature
space that utilizes as few of the n features
(dimensions) as possible. In the concave min-
imization approach [19, 5] a separating plane
is generated by minimizing a weighted sum of
distances of misclassi�ed points to two par-
allel planes that bound the sets and which
determine the separating plane midway be-
tween them. Furthermore, the number of di-
mensions of the space used to determine the
plane is minimized. In the support vector
machine approach [27, 7, 1, 10, 24, 28], in
addition to minimizing the weighted sum of
distances of misclassi�ed points to the bound-
ing planes, we also maximize the distance be-
tween the two bounding planes that generate
the separating plane. Computational results
show that feature suppression is an indirect
consequence of the support vector machine
approach when an appropriate norm is used.
Numerical tests on 6 public data sets show
that classi�ers trained by the concave min-
imization approach and those trained by a
support vector machine have comparable 10-
fold cross-validation correctness. However, in
all data sets tested, the classi�ers obtained by
the concave minimization approach selected
fewer problem features than those trained by
a support vector machine.

1 INTRODUCTION

The feature selection problem addressed here is that
of discriminating between two �nite point sets in n-
dimensional feature space Rn by a separating plane
that utilizes as few of the features as possible.

Classi�cation performance is determined by the in-
herent class information available in the features pro-
vided. It seems logical to conclude that a large number
of features would provide more discriminating ability.
But, with a �nite training sample, a high-dimensional
feature space is almost empty [12] and many separators
may perform well on the training data, but few may
generalize well. Hence the importance of the feature
selection problem in classi�cation [15]. The optimiza-
tion formulations in Section 2 exploit one realization
of the Occam's Razor bias [3]: compute a separat-
ing plane with a small number of predictive features,
discarding irrelevant or redundant features. These for-
mulations can be considered wrapper models as de�ned
in [14].

The �rst approach [19, 5], described in Section 2, in-
volves the minimization of a concave function on a
polyhedral set. A plane is constructed such that a
weighted sum of distances of misclassi�ed points to
the plane is minimized and as few dimensions of the
original feature space Rn are used. This is achieved
by constructing two parallel bounding planes, in as
small dimensional space as possible, that bound each
of the two sets to the extent possible by placing the
two sets on two opposite halfspaces determined by the
two planes. The two planes are determined such that
the sum of weighted distances of points in the wrong
halfspace to the bounding plane is minimized. This
leads to the minimization of a concave function on a
polyhedral set (problems (6) and (8) below) for which
a stationary point can be obtained a successive lin-



earization algorithm (Algorithm 2.1 below). The �-
nal separating plane is taken midway between the two
bounding parallel planes.

The second approach, that of a support vector ma-
chine [27, 7, 1, 10, 24, 28], described in Section 3, con-
structs two parallel bounding planes in n-dimensional
space Rn as in the �rst approach outlined above, but
in addition attempts to push these planes as far apart
as possible. The justi�cation for this, apart from re-
ducing the VC dimension [27] which in turn improves
generalization, is that for the linearly separable case,
the further apart the planes, the smaller the halfspace
assigned to each of the two sets, reducing the possi-
bility that new unseen points from the wrong set lie
in that halfspace. Although improved generalization
is the primary purpose of the support vector machine
formulation, it turns out that the linear program (13)
resulting from employing the 1-norm to measure the
distance between the two bounding planes, leads also
to a feature selection method, whereas the linear pro-
gram resulting from the use of the 1-norm (12) and
the quadratic program resulting from the 2-norm (14)
do not lead to feature selection methods.

In Section 4 we describe our computational experi-
ments on 6 publicly available data sets using the ap-
proaches described in Sections 2 and 3. The goal
is to evaluate the generalization ability of classi�ers
trained by solving: the concave optimization problem
(8), three versions of the support vector machine prob-
lem with di�erent norms (12), (13), (14) as well as the
robust linear program RLP (4). RLP, which underlies
the proposed feature selection methods here, has no
feature suppression capability built in. We measure
generalization ability by 10-fold cross-validation [26].
Numerical tests on 6 public data sets show that clas-
si�ers trained by the concave minimization approach
and those trained by a support vector machine have
comparable 10-fold cross-validation correctness. How-
ever, in all data sets tested, the classi�ers obtained
by the concave minimization approach selected fewer
problem features than those trained by a support vec-
tor machine. Further, computational time for the
normally used quadratic programming approach for
SVMs, was orders of magnitude larger than the pro-
posed linear programming approaches.

We now describe our notation and give some back-
ground material. All vectors will be column vectors
unless transposed to a row vector by a superscript T .
For a vector x in Rn, jxj will denote a vector in Rn of
absolute values of the components of x. For a vector
x 2 Rn, x+ denotes the vector in Rn with components

maxf0; xig. For a vector x 2 Rn, x� denotes the vec-
tor in Rn with components (x�)i = 1 if xi > 0 and
0 otherwise (i.e. x� is the result of applying the step
function component-wise to x). The base of the nat-
ural logarithm will be denoted by ", and for a vector
y 2 Rm; "�y will denote a vector in Rm with compo-
nents "�yi ; i = 1; : : : ;m. For x 2 Rn and 1 � p <1:

kxkp =

0
@ nX

j=1

jxj j
p

1
A

1

p

; kxk1 = max
1�j�n

jxj j:

For a general norm k � k on Rn, the dual norm k � k0 on
Rn is de�ned as

kxk0 = max
kyk=1

x0y:

The 1-norm and 1-norm are dual norms, and so are
a p-norm and a q-norm for which 1 � p; q � 1 and
1

p
+ 1

q
= 1. The notation A 2 Rm�n will signify a

real m � n matrix. For such a matrix AT will denote
the transpose of A and Ai will denote the i-th row
of A. A vector of ones in a real space of arbitrary
dimension will be denoted by e. A vector of zeros in
a real space of arbitrary dimension will be denoted by
0. The notation argmin

x2S
f(x) will denote the set of

minimizers of f(x) on the set S. A separating plane,
with respect to two given point setsA and B in Rn, is a
plane that attempts to separate Rn into two halfspaces
such that each open halfspace contains points mostly
of A or B.

2 FSV: FEATURE SELECTION VIA

CONCAVE MINIMIZATION

In this part of the paper we describe a feature selection
procedure that has been e�ective in medical and other
applications [5, 19].

Given two point sets A and B in Rn represented by
the matrices A 2 Rm�n and B 2 Rk�n respectively,
we wish to discriminate between them by a separating
plane:

P = fx j x 2 Rn; xTw = g; (1)

with normal w 2 Rn and 1-norm distance to the origin

of
jj

kwk1
[20]. We shall attempt to determine w and 

so that the separating plane P de�nes two open halfs-
paces fx j x 2 Rn; xTw > g containing mostly points
of A, and fx j x 2 Rn; xTw < g containing mostly



points of B. Hence, upon normalization, we wish to
satisfy

Aw � e + e; Bw � e � e: (2)

to the extent possible. Conditions (2) can be satis�ed
if and only if, the convex hulls of A and B are disjoint.
This is not the case in many real-world applications.
Hence, we attempt to satisfy (2) in some \best" sense
by minimizing some norm of the average violations of
(2) such as

min
w;

f(w; ) = min
w;

1

m
k(�Aw + e + e)+k1

+
1

k
k(Bw � e + e)+k1: (3)

Recall that for a vector x, x+ denotes the vector with
components maxf0; xig. Two principal reasons for
choosing the 1-norm in (3) are: (1) problem (3) is
then reducible to a linear program (4) with many im-
portant theoretical properties making it an e�ective
computational tool [2], (2) the 1-norm is less sensitive
to outliers such as those occurring when the underly-
ing data distributions have pronounced tails, hence (3)
has a similar e�ect to that of robust regression [13],[11,
pp 82-87].

The formulation (3) is equivalent to the following ro-
bust linear programming formulation (RLP) proposed
in [2] and e�ectively used to solve problems from real-
world domains [21]:

minimize
w;;y;z

eT y
m

+ eT z
k

subject to
�Aw + e + e � y;

Bw � e + e � z;

y � 0; z � 0:

(4)

The linear program (4) or, equivalently, the formu-
lation (3), de�ne a separating plane P that approx-
imately satis�es the conditions (2) in the following
sense. Each positive value of yi determines the dis-
tance yi

kwk0
[20, Theorem 2.2] between a point Ai of

A lying on the wrong side of the bounding plane
xTw =  + 1 for A, that is Ai lying in the open halfs-
pace

fx
�� xTw <  + 1g;

and the bounding plane xTw =  + 1. Similarly for
B and xTw =  � 1. Thus the objective function of

the linear program (4) minimizes the average sum of
distances, weighted by kwk0, of misclassi�ed points to
the bounding planes. The separating plane P (1) is
midway between the two bounding planes and parallel
to them.

Feature selection [19, 5] is imposed by attempting to
suppress as many components of the normal vector
w to the separating plane P that is consistent with
obtaining an acceptable separation between the sets
A and B. We achieve this by introducing an extra
term with parameter � 2 [0; 1) into the objective of
(4) while weighting the original objective by (1��) as
follows:

minimize
w;;y;z

(1� �)
�
eT y
m

+ eT z
k

�
+ �eT jwj�

subject to
�Aw + e + e � y;

Bw � e + e � z;

y � 0; z � 0:

(5)

Note that the vector jwj� 2 Rn has components which
are equal to 1 if the corresponding components of w
are nonzero and components equal to zero if the cor-
responding components of w are zero. Recall that e
is a vector of ones and eT jwj� is simply a count of
the nonzero elements in the vector w. Problem (5)
balances the error in separating the sets A and B,�
eT y

m
+
eT z

k

�
, and the number of nonzero elements

of w, (eT jwj�). Further, if an element of w is zero, the
corresponding feature is removed from the problem.

By introducing the variable v we are able to eliminate
the absolute value from problem (5) which leads to
the following equivalent parametric program (for � 2
[0; 1)):

minimize
w;;y;z;v

(1� �)
�
eT y
m

+ eT z
k

�
+ �eT v�

subject to

�Aw + e + e � y;

Bw � e + e � z;

y � 0; z � 0;
�v � w � v:

(6)

Since v appears positively weighted in the objective
and is constrained by �v � w � v, it e�ectively mod-
els the vector jwj. This feature selection problem will
be solved for a value of � 2 [0; 1) for which the result-
ing classi�cation obtained by the separating plane (1)
midway between the bounding planes xTw =  � 1,



generalizes best, estimated by a cross-validation tun-
ing procedure. Typically this will be achieved in a fea-
ture space of reduced dimensionality, that is eT v� < n

(i.e. the number of features used is less than n).

Because of the discontinuity of the step function term
eT v�, we approximate it by a concave exponential on
the nonnegative real line [19]. The approximation of
the step vector v� of (6) by the concave exponential :

v� � t(v; �) = e� "��v; � > 0; (7)

leads to the smooth problem (FSV:Feature Selection
Concave):

minimize
w;;y;z;v

(1� �)
�
eT y
m

+ eT z
k

�
+ �eT (e� "��v)

subject to

�Aw + e + e � y;

Bw � e + e � z;

y � 0; z � 0;
�v � w � v:

(8)

It can be shown [4, Theorem 2.1] that for a �nite
value of � (appearing in the concave exponential) the
smooth problem (8) generates an exact solution of the
nonsmooth problem (6). We note that this problem is
the minimization of a concave objective function over
a polyhedral set. Even though it is di�cult to �nd a
global solution to this problem, a fast successive linear
approximation (SLA) algorithm [5, Algorithm 2.1] ter-
minates �nitely (usually in 5 to 7 steps) at a stationary
point which satis�es the minimum principle necessary
optimality condition for problem (8) [5, Theorem 2.2]
and leads to a sparse w with good generalization prop-
erties. For convenience we state the SLA algorithm
below.

Algorithm 2.1
Successive Linearization Algorithm (SLA) for
FSV (8). Choose � 2 [0; 1). Start with a random
(w0; 0; y0; z0; v0). Having (wi; i; yi; zi; vi) deter-
mine (wi+1; i+1; yi+1; zi+1; vi+1) by solving the linear
program:

minimize
w;;y;z;v

(1� �)( e
T y
m

+ eT z
k
) + ��

�
"��v

i
�T

(v � vi)

subject to

�Aw + e + e � y;

Bw � e + e � z;

y � 0; z � 0;
�v � w � v:

(9)

Stop when

(1� �)(
eT (yi+1 � yi)

m
+
eT (zi+1 � zi)

k
) +

��
�
"��v

i
�T

(vi+1 � vi) = 0: (10)

Comment: The parameter � was set to 5. The pa-
rameter � was chosen to \maximize" generalization
performance.

We have found useful solutions to (8) for the �xed
value � = 5 [5, 4]. Another approach, involving more
computation, is to solve (8) for an increasing sequence
of � values.

3 SVM: FEATURE SELECTION

VIA SUPPORT VECTOR

MACHINES

The support vector machine idea [27, 1, 10, 24, 28],
although not originally intended as a feature selection
tool, does in fact indirectly suppress components of the
normal vector w to the separating plane P (1) when
an appropriate norm is used for measuring the dis-
tance between the two parallel bounding planes for the
sets being separated. The SVM approach consists of

adding another term, kwk
0

2
, to the objective function of

the RLP (4) in a similar manner to the appended term
eT jwj� of problem (5). Here, k � k0 is the dual of some
norm on Rn used to measure the distance between the
two bounding planes. The justi�cation for this term
is as follows. The separating plane P (1) generated by
the RLP linear program (4) lies midway between the
two parallel planes wTx =  + 1 and wTx =  � 1.
The distance, measured by some norm k � k on Rn,
between these planes is precisely 2

kwk0
[20, Theorem

2.2]. The appended term to the objective function of

the RLP (4), kwk0

2
, is the reciprocal of this distance,

thus driving the distance between these two planes up
to obtain better separation. This results then in the
following mathematical programming formulation for
the SVM formulation:

minimize
w;;y;z;�

(1� �)(eT y + eT z) + �
2
kwk0

subject to
�Aw + e + e � y;

Bw � e + e � z;

y � 0; z � 0:

(11)

Points Ai 2 A and Bi 2 B appearing in active con-
straints of the linear program (11) with positive dual



variables constitute the support vectors of the prob-
lem. These points are the only data points that are
relevant for determining the optimal separating plane.
Their number is usually small and it is proportional to
the generalization error of the classi�er [24].

If we use the 1-norm to measure the distance between
the planes, then the dual to this norm is the 1-norm
and accordingly kwk0 = kwk1 in (11) which leads to
the following linear programming formulation:

minimize
w;;y;z;�

(1� �)(eT y + eT z) + �
2
�

subject to

�Aw + e + e � y;

Bw � e + e � z;

�e� � w � e�;

y � 0; z � 0:

(12)

Similarly if we use the1-norm to measure the distance
between the planes, then the dual to this norm is the 1-
norm and accordingly kwk0 = kwk1 in (11) which leads
to the following linear programming formulation:

minimize
w;;y;z;s

(1� �)(eT y + eT z) + �
2
eT s

subject to

�Aw + e + e � y;

Bw � e + e � z;

�s � w � s;

y � 0; z � 0:

(13)

We note that the �rst paper on the multisurface
method on pattern separation [17] also proposed and
implemented, just as does the support vector machine
approach, forcing the two parallel planes that bound
the sets to be separated to be as far apart as possible.

Usually the support vector machine problem is formu-
lated using the 2-norm in the objective [27, 1]. Since
the 2-norm is dual to itself, it follows that the dis-
tance between the parallel planes de�ning the separat-
ing surface is also measured in the 2-norm when this
formulation is used. In this case kwk0 = kwk2, and

one usually appends the term
�

2
kwk22 to the objective

of (11) resulting in the following quadratic program:

minimize
w;;y;z

(1� �)(eT y + eT z) + �
2
wTw

subject to
�Aw + e + e � y;

Bw � e + e � z;

y � 0; z � 0:

(14)

Nonlinear separating surfaces, which are linear in their
parameters, can also easily be handled by the formu-
lations (8), (12) and (13) [16]. If the data are mapped
nonlinearly via � : Rn ! R`, a nonlinear separating

surface in Rn is easily computed as a linear separator
in R`. In practice, one usually solves (14) by way of its
dual [18]. In this formulation, the data enter only as
inner products which are computed in the transformed
space via a kernel function K(x; y) = �(x) � �(y)
[6, 27, 28].

We note that separation errors in (12) - (14) are
weighted equally conforming to the SVM formulations
in [6, 27]. In contrast, the formulations (4) and (8)
measure average separation error. Minimizing average
separation error in (4) ensures that the solution w = 0

occurs i�
eTA

m
=

eTB

k
, in which case it is not unique

[2, Theorem 2.5].

We turn our attention now to computational testing
and comparison.

4 COMPUTATIONAL RESULTS

4.1 DATA SETS

The Wisconsin Prognostic Breast Cancer Database
consists of 198 instances with 35 features represent-
ing follow-up data for one breast cancer case [23].

We used 2 variants of this data set. The �rst data set
was created where the elements of the set A were 30
nuclear features plus diameter of excised tumor and
number of positive lymph nodes of instances corre-
sponding to patients in which cancer had recurred in
less than 24 months (28 points). The set B consisted
of the same features for patients in which cancer had
not recurred in less than 24 months (127 points). The
second variant of the data set consisted of the same 32
features, but but splits the data into A and B di�er-
ently. Elements of A corresponds to patients with a
cancer recurrence in less than 60 months (41 points)
and B corresponds to patients which cancer had not
recurred in less than 60 months (69 points).

The Johns Hopkins University Ionosphere data set
consists of 34 continuous features of 351 instances [23].
Each instance represents a radar return from the iono-
sphere. The set A consists of 225 radar returns termed
\good" or showing some type of structure in the iono-
sphere. The set B consists of 126 radar returns termed
\bad"; their signals pass through the ionosphere.

The Cleveland Heart Disease data set consists of 297
instance with 13 features (see documentation [23]). Set
A consist of 214 instance. The set B consists of 83
instances.
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Figure 1: Tuning and testing sets correctness for a support
vector machine (13) versus the sparsity-inducing parameter

� on the WPBC (24 months) data set. Dashed= \tuning"

correctness, Solid = test correctness.

The Pima Indians Diabetes data set consists of 768
instances with 8 features plus a class label (see doc-
umentation [23]). The 500 instances with class label
\0" were place in A, the 268 instances with class label
\1" were placed in B.

The BUPA Liver Disorders data set consists of 345
instances with 6 features plus a selector �eld used to
split the data into 2 sets (see documentation [23]). Set
A consists of 145 instances, the set B consists of 200
instances.

4.2 EXPERIMENTAL METHODOLOGY

Our goal was to evaluate the generalization ability of
the classi�ers obtained by solving: the concave mini-
mization problem FSV (8), SVM 1-norm problem (13),
the SVM 1-norm problem (12), the SVM 2-norm
problem (14) and the robust linear program (RLP)
(4). We estimate the generalization ability of a classi-
�er via 10-fold cross-validation [26].

We note that the objective function parameter �,
which can induce sparsity, must be chosen carefully
to maximize the generalization ability of the resulting
classi�er. Choosing � = 0 will maximize the training
correctness of the resulting classi�er, but often this
classi�er performs poorly on data not in the train-
ing set [25]. We employ the following \tuning set"
procedure for choosing � at each fold of 10-fold cross-
validation: For each � in a candidate set �, we perform
the following: (i) set aside 10% of the training data as

a \tuning" set, (ii) obtain a classi�er for the given
value of �, (iii) determine correctness on the \tuning"
set, (iv) repeat steps (i)-(iii) ten times, each time set-
ting aside a di�erent 10% portion of the training data.
The \score" for this value of � is the average of the 10
correctness values determined in (iii).

We �x the value of � as that with the best \score" de-
termined from the tuning procedure (ties are broken by
choosing the smallest �-value). This is the value used
for the given fold of 10-fold cross-validation. The set �
is a set of candidate values and for these experiments
was set at: � = f0:05; 0:10; 0:20; : : : ; 0:90; 0:95g. The
curves in Figure 1 indicate that the value of � that
maximizes the \tuning" score (dashed curve in Figure
1) is a good estimate of the value of � that maximizes
the test set correctness (solid curve).

4.3 EXPERIMENTAL RESULTS

Table 1 summarizes the average number of original
problem features selected by the classi�ers trained by
each of the methods.

Table 2 summarizes the results of the 10-fold cross-
validation experiments on 6 real-world data sets. All
\Train" and \Test" numbers presented are average
correctnesses over 10-folds. The p-value is an indicator
of signi�cance di�erence in \Test" correctness between
the classi�ers obtained by solving FSV (8) and the
classi�ers obtained by solving the SVM 1-norm prob-
lem (13) 1. Recall that a high p-value indicates that
the di�erence is not signi�cant. We note that p-values
were not calculated for the other pairwise comparisons
because the solutions obtained by solving the SVM
1-norm, SVM 2-norm and the RLP did not suppress
problem features (see Table 1).

4.4 DISCUSSION

The FSV (8) and the SVM 1-norm (13) problems
where the only ones exhibiting feature selection (Ta-
ble 1). On the 6 data sets tested, the SVM 1-norm
classi�ers performed slightly better on 3 data sets and
FSV classi�ers performed slightly better on 3 data sets.
The minimum p-value is 0.1246 indicates that classi-
�ers obtained by the FSV (8) and the SVM 1-norm
(13) methods have similar generalization properties.
Applying the paired t-test to 10-fold cross validation
results may indicate a di�erence in the average test

1Speci�cally, this is the p-value of a two-tailed paired
t-test testing the hypothesis that the di�erence in \Test"
correctnesses for the FSV and SVM 1-norm classi�ers is
zero



set correctness when one is not present [9]. Thus the
results of these experiments may be more similar than
indicated by the p-values.

We note that the classi�ers obtained by solving the
SVM 1-norm (12) suppressed none of the original
problem features for all but the largest values of �
(near 1.0), which in general is of little use because it
is often accompanied by poor set separation. Simi-
lar behavior was observed by solving the SVM 2-norm
(14) problem. Note that the 1-norm is sensitive to
outliers, as is the 2-norm squared.

The classi�ers obtained by solving the FSV problem
(8) selected fewer problem features than the any of the
SVM formulations (12), (13), (14) and the RLP (4)
FSV classi�ers reduced the number of features used
over SVM 1-norm by as much as 39.5% (WPBC 60
month), while maintaining comparable generalization
performance.

On the WPBC 24 month dataset, both the FSV clas-
si�ers (8) and the SVM 1-norm classi�ers (13) most
often selected a nuclear area feature and number of
lymph nodes removed from the patient. These fea-
tures are deemed relevant to the prognosis problem.

All linear programs formulations were solved using the
CPLEX package [8] called from within MATLAB [22].
The quadratic programming problem (14) was solved
using MATLAB's quadratic optimization solver, which
encountered di�culty on conditioning the QP con-
straint matrix, which may a�ect the interpretation of
the results for this approach. See Table 3 for average
solve times.

5 SUMMARY AND FUTURE

WORK

Computational comparisons of classi�ers obtained by
solving four mathematical optimization problems are
presented. The optimization formulations are either
linear (4), (12) and (13), or quadratic (14), or can be
solved by a �nite sequence of linear programs (solv-
ing (8) via Algorithm 2.1). Classi�ers obtained
by solving the FSV problem (8) and the SVM
1-norm problem (13) exhibit feature suppres-
sion and have comparable generalization per-
formance on six publicly available real world
data sets tested. The classi�ers obtained by
solving the FSV problem (8) suppressed more
features than the corresponding SVM 1-norm
classi�ers (13). The quadratic SVM (14) took
orders of magnitude more time than the linear-

programming-based SVMs (12) and (13).

When the distance between the 2 parallel planes de�n-
ing the separating surface in the SVM problem is cho-
sen to be the 1-norm, the resulting SVM optimization
problem has the 1-norm (dual norm to the 1-norm)
appearing in the objective. The classi�ers obtained by
solving this problem (SVM 1-norm (12)) did not ex-
hibit feature selection. Similar behavior was observed
for classi�ers obtained by solving the SVM 2-norm (14)
problem. The generalization ability of these classi�ers
in comparison with the others presented needs to be
further investigated.

Future work includes further analysis of the bene�ts
of measuring the distance between the bounding par-
allel planes de�ning the separating plane and the re-
sulting optimization problem utilizing the dual norm
(11). A characterization of classes of data sets which
lend themselves to better separation with the choice
of one norm over another will allow practitioners to
choose a priori an optimization formulation believed
to be \best" suited to the separation problem at hand.
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