Estimating Conditional Volatility with Neural Networks

[an T Nabney* H W Cheng!

1 Introduction

It is well known that one of the obstacles to effective forecasting of exchange rates is het-
eroscedasticity (input dependent conditional variance). The autoregressive conditional het-
eroscedastic (ARCH) model and its variants have been used to estimate a time dependent
variance for many financial time series. However, such models are essentially linear in form
and we can ask whether a non-linear model for variance can improve forecasting results just
as non-linear models (such as neural networks) for the mean have done.

In this paper we consider two neural network models for variance estimation. Mixture
Density Networks [1, 15] combine a Multi-Layer Perceptron (MLP) and a mixture model
to estimate the conditional data density. They are trained using a maximum likelihood
approach. However, it is known that maximum likelihood estimates are biased and lead to
a systematic under-estimate of variance. More recently, a Bayesian approach approach to
parameter estimation in such models has been developed [3] that shows promise in removing
the maximum likelihood bias. However, up to now, this model has not been used for time
series prediction.

Here we compare these algorithms with two other models to provide benchmark results: a
linear ARIMA model and a conventional neural network trained with a sum-of-squares error
function. In both these cases, the model estimates the conditional mean of the time series
with a constant variance noise model. This comparison is carried out on daily exchange rate
data for five currencies.

In this paper we are concerned with models that predict the conditional variance for the
next time step. The conditional variance can be used to provide ‘error bars’ (also known as
‘prediction intervals’ in the regression literature) around the conditional mean. When the
size of the error bars increases, then the value of the next forecast is less certain. This is
less useful for options pricing than longer term variance forecasts, but the information can
be incorporated into trading rules. For example, the size of error bars is a measure of how
likely the predicted price movement is likely to be accurate. We are interested in comparing
the generalisation performance of different models and use log likelihood on out of sample
data with one step ahead prediction to compare results.

The rest of this paper is organised as follows. In section 2 the various different models
that we employ are described and contrasted. Section 3 describes the methodology that

*Neural Computing Research Group, Aston University, Birmingham, B4 7TET, UK. Correspondence to
first author at this address or by email at i.t.nabney@aston.ac.uk
tFaculty of Business Administration, University of Macau, Macau

is used in the empirical trials and then discusses the results. In the final section we draw
together the main conclusions of this study and suggest future avenues of research.

2 Models

In this section we shall describe the main features of the models that we are comparing.
Throughout this paper we shall use z; to denote the target values (the actual time series
values) and y; to denote predictions made by models. For simplicity, we shall assume that
the time series is univariate, although all the methods can be extended to multivariate time
series.

2.1 ARIMA model

The autoregressive-integrated-moving average scheme (ARIMA) is a linear model that ex-
presses an output 7; at time ¢ in terms of previous outputs and random effects (or ‘noise’)
€t, which are the residuals (i.e. y; — 2, the difference between predicted and actual values at
time t) of the model at earlier time steps.

P q
Yy =0+ Z PiYr—i + € — Z Oj€j (1)
i=1 j=1

Often a time series may be differenced to remove trends. A model of the form given by
equation (1) that is applied to a time series that has been differenced d times is said to be
of orders p, d and ¢, written ARIMA(p,d, q). The § term is a constant drift term.

The parameters d, ¢;, 6; are estimated from a training dataset. We used the following
method to determine the model structure (defined by the integers p, d, and q).

e If the partial autocorrelation function (PACF) of the differenced series displays a sharp
cutoff and/or the lag — 1 autocorrelation is positive — i.e., if the series appears slightly
‘underdifferenced’” — then we tried adding an AR term to the model. The lag at which
the PACF cuts off is the indicated number of AR terms.

e If the autocorrelation function (ACF) of the differenced series displays a sharp cutoff
and/or the lag — 1 autocorrelation is negative — i.e., if the series appears slightly
‘overdifferenced’ — then we tried adding an MA term to the model. The lag at which
the ACF cuts off is the indicated number of MA terms.

e It is possible for an AR term and an MA term to cancel each other’s effects, so if a
mixed ARMA model seems to fit the data, we also tried a model with one fewer AR
term and one fewer MA term, particularly if the parameter estimates in the original
model require more than 10 iterations to converge.

If we assume that the random effects ¢; have a Gaussian distribution N(0,¢?) with zero
mean and constant variance, then we can compute the log likelihood of the actual target
value once we have estimated 2. This can be done by calculating the sample average of
the residuals on the training set. It is then straightforward to estimate the parameters
using a maximum likelihood approach. Thus the ARIMA scheme is a linear model for the
conditional mean with a constant noise variance.

2.2 MLP with constant variance

The multi-layer perceptron (MLP) is a neural network model that can be used for regression
(as here) or classification. In the case of regression, each network output is the linear
combination of the activations of n so called hidden units, each of which is a nonlinear
function applied to a linear combination of the inputs. If, for the sake of simplicity, we
assume that the output is one dimensional, we can write this model in the form

n

y=flxw)= Z a;p(u; x + b;) (2)

i=1

where x is the input vector, w denotes the set of parameters (or weights) in the model, u;
are the weights from the inputs to hidden unit ¢, b; is the bias for the ¢th hidden unit, and a;
are the hidden to output weights. The function ¢ is the activation function, and is chosen to
be nonlinear (for example tanh). When applied to time series forecasting, the input vector
x is typically a vector of previous values from the time series, which makes the network a
non-linear auto-regressive model. Some work has been done on incorporating past residuals
as inputs for financial time series forecasting [4] with some success, but we will not pursue
this approach here (partly because we are interested in using the residuals to model the
conditional variance of the time series).

The ARIMA model is parametric in that a specific functional form (linear in this case)
is assumed and the parameters are then fitted from the data. In contrast, the MLP can be
viewed as a nonlinear (due to the activation function) semi-parametric data model. This is
because the MLP allows a very general class of functional forms (in fact, the MLP approxi-
mates any continuous function of its inputs to an arbitrary accuracy: see [5, 7, 6]) in which
the number of adaptive parameters (which is governed by n in equation 2) can be varied in
a systematic way to build ever more flexible models, and where this number is independent
of the training data set size.

In the usual approach to regression, the sum of squares error function is used:

E ==Y [f(xiw) — 2z (3)

k=1

1
2

where the index k runs over the N training patterns. Then it is well know (see [2]) that the
optimal function (in the sense of minimising the error) is

fw = (z]x) (4)

the conditional mean of the target z given x. It can also be shown that at the global
minimum of the error function, its residual value is the average variance of the target value
around its conditional average. We can represent the conditional distribution of the target
data by a Gaussian function with centre (depending on the input x) given by f(x;w*) and
a constant variance determined by the residual error.

The use of a least squares error function does not require the conditional distribution of
the target data to be Gaussian, but it cannot distinguish between a Gaussian distribution
and any other distribution with the same conditional mean and constant variance. If we

do assume that the target has a Gaussian conditional distribution, then the sum of squares
error function arises naturally through a maximum likelihood approach, assuming that the
data is drawn independently from some fixed distribution. The error function in equation 3
is given by E = —In L 4 ¢ where c is a constant (which can be ignored when minimizing F)
and £, the data likelihood, is given by

N

£ = [[pCarlxe)p(x) (5)

k=1

Time series data is not an independent sample, but Williams has shown in [18] how a similar
decomposition can be achieved under the assumption that the conditional density at each
time step depends only on a fixed number of previous values from the time series.

(|21, ... 20) = p(Te]Ti-1, ..., TeT) (6)

Despite the constant variance constraint, MLPs have been used with great success for a
number of forecasting problems.

To train a neural network, it is necessary to minimise the value of F by adjusting the
parameter vector w. This can be done with a number of different non-linear optimisation
algorithms: however, most of these require the partial derivatives

()
pa. (7)

to speed up the search in high dimensional parameter space. One of the reasons for choosing
a model of the form 2 is that these partial derivatives can be computed efficiently using the
back-propagation algorithm. In our experiments we used quasi-Newton methods with the
BFGS update formula (see [16] for an implementation), or scaled conjugate gradient [12].

Of course, a maximum likelihood approach with no regularisation to penalise overly-
complex solutions is prone to over-fitting, where the noise in the finite training dataset is
fitted, rather than the underlying generator of the data (the true conditional mean). In this
study, rather than use a Bayesian regularisation method to solve this [9], we simply used
early stopping (as in [13]). This method is based on the fact that during a typical training
session, the training set error decreases monotonically. However, the error measured with
respect to independent data, the validation set, often shows a decrease at first followed by
an increase as the network starts to over-fit. Training can therefore be stopped at the points
where the validation set error increases: this network is expected to have good generalisation
performance.

There are two drawbacks of this approach with financial time series. Firstly, the amount
of noise (and indeed, the likely non-stationarity of the underlying data generator) mean that
early stopping may stop too early, with an under-trained network. Secondly, the validation
set has to be independent from the training data, and so if we select contiguous blocks
of data (to minimise the correlation between datasets), this means that the test dataset
is separated by a longer interval of time from the training set (assuming that the order is
training: validation: test). This increases the likelihood of poor generalisation caused by
non-stationarity.

2.3 Mixture Density Networks

The MLP provides a very flexible model for predicting the conditional mean of an unknown
function. However, the constant variance assumption is often unrealistic. In financial data,
for example, many time series are known to exhibit heteroscedasticity, and it is therefore
logical to extend the simple MLP framework to estimate the conditional variance of the
target data in addition to the conditional mean. This variance can be used to give a more
accurate estimate of the noise model.

A maximum likelihood approach to this problem is quite straightforward. For each target
value, the neural network has two outputs, each of which is connected to all the hidden units:
one represents the target value (the conditional mean, in fact), while the other represents
the conditional variance. The conditional mean is a linear combination of the hidden units
as in equation 2. However, the variance must be a non-negative quantity. It is convenient
to use an exponential function to constrain the network output to the correct values.

n

o?(x) = exp [Z a;p(ul x + b;)

i=1

(8)

It is a straightforward exercise in calculus to calculate the relevant partial derivatives of the
negative log likelihood of the data, and then optimisation algorithms can be used to train
the network parameters. In our experiments, we used a quasi-Newton algorithm with the
BFGS update method for training and early stopping to regularise the network. Similar
models have been applied to predicting time series before. In [15] a pair of networks were
trained with a more complicated procedure.

If the output is multi-dimensional then this approach can be generalised to a multi-variate
Gaussian noise model, where the network predicts the conditional mean and the covariance
matrix. In [18] this approach is used to model the correlations between multiple currency
markets.

This model simply extends the MLP by allowing the variance of a Gaussian representing
the conditional density to be input dependent. However, by using more complex conditional
densities (for example, mixture models) with parameters estimated by the network, it is
possible to model arbitrary conditional distributions [1]. The probability density of the
target data is represented by a linear combination of kernel functions of the form

m

p(tx) = oy(x)di(t]x) (9)

j=1

where the mizing coefficients o satisfy the following constraints
m
aj(x) >0 and Z aj(x) =1 Vx (10)
j=1

Various choices for the kernel functions ¢ are possible. In this paper we have chosen Gaus-
sians with input dependent means and variances. For a good model, the relationship of the
mixing coefficients and the kernel parameters on the input vector x may be non-linear. It
therefore makes sense to use a neural network to model this relationship.

2.4 Bayesian Inference of Noise Levels

Instead of using a maximum likelihood approach to estimating the model coefficients (or
weights), which attempts to find a single optimal set of values, the Bayesian approach gener-
ates a probability distribution function in parameter space representing the relative degrees
of belief in different values for the parameter vector. This function is initially set to some
prior distribution p(w). Once the training data D has been observed, the prior is con-
verted into a posterior distribution p(w|D) through the use of Bayes’ theorem and the data
likelihood p(D|w).

In principle we make predictions and estimate o?(x) by averaging the predictions made
by all possible networks weighted by their corresponding posterior posterior probability.
However, as this posterior distribution tends to be very complex, this procedure requires
computationally intensive methods such as Markov Chain Monte Carlo. A more practical
approach is to select a single network given by the mode of the posterior distribution (i.e.
the parameter vector wyp that maximises p(D|w). Because we estimate the probability
distribution of the parameter estimates, we can also give error bars on our forecasts that
take into account the uncertainty in the weight vector.

It is well known that the maximum likelihood estimate of variance is biased (it tends
to underestimate variance). The regularisation methods that we have described above have
drawbacks for financial time series, and so it is of interest to apply a Bayesian approach to
learning as this should, in theory, give rise to unbiased estimates.

Although the Bayesian framework is very attractive from a theoretical point of view, it
can be difficult to apply in practice. MLP networks give rise to posterior weight distributions
that are difficult to evaluate [9]. Instead we use a generalised linear regression model (which
is basically equivalent to a radial basis function (RBF) network) as in [3]. The regression
output is given by

y(x;w) = w’ (x) (11)

where ¢ represents a vector of basis functions (one of which is a constant ¢y = 1 and is the
bias term). It turns out to be convenient to use two separate networks: one for regression
and one for the variance. The inverse variance model is given by

B(x;u) = exp(u’p(x)). (12)

The basis functions ¢ and 1 are chosen to be Gaussians (in this instance; other choices are
possible, see [8]) and are parameterised so that they model the unconditional probability
density of the input data using the EM algorithm to train a mixture model with the same
number of centres [2].

The algorithm involves a hierarchical approach to modelling with ‘hyperparameters’ to
control the prior distributions that are estimated from the data. Between each re-estimation
of the hyperparameters the most probable value of the weight vectors w and u is found.
The optimisation of w turns out to be straightforward, as the error for this network (based
on penalised negative log likelihood) is quadratic in the weights, and so can be solved by
standard techniques from linear algebra. (This is another reason for choosing an RBF
network in place of an MLP). The error function for u is not quadratic, so we use a standard

0.74

L L L L L L L L L L L L L L
0 500 1000 1500 2000 2500 3000 3500 0 50 100 150 200 250 300 350 400 450 500
Time Time

0.7

0.69 y

Figure 1: Datasets for US dollar/Canadian dollar: training/validation (left) and test (right).

non-linear optimisation algorithm. In the work reported here, the scaled conjugate gradient
algorithm was used [12].

The algorithm described involves computing the Hessian matrix (the matrix of second
order partial derivatives). Some of the intermediate steps of this computation require the
storage of matrices of size O(N?), where N is the number of training points. Even on
workstations, this put an upper limit on the size of dataset that can be used for training. In
our experiments, we used training sets of size at most 600. Because the Bayesian approach
to training provides regularisation (and thus controls network complexity), there is no need
for a validation set, so we sub-sampled the combined training and validation sets.

3 Experiments

3.1 Methodology

We used data from five currency markets: US dollar/Canadian dollar (CAD); US dol-
lar/sterling (GBP); US dollar/Deutsche Mark (DEM); US dollar/Swiss Franc (CHF); US
dollar/Japanese Yen (JPY). The daily closing prices in the period June 1, 1973 to May 21,
1987 were used, giving 3505 time periods in total. For the neural network models, each input
pattern consisted of the five previous prices, and the price for the next time step and the
conditional variance were the outputs. The structure of the ARIMA models was determined
using the method described in section 2.1. We used the first 2505 patterns as a training set,
the next 500 for a validation set (where relevant for early stopping) and the last 500 as the
test set. Where early stopping was used, the validation set performance was evaluated every
50 cycles of the training algorithm.

We are interested in the generalisation performance of the different models, so they were
compared on the basis of the negative log likelihood of the test set (i.e. ‘out of sample’

Price

Price

0.7

0.6

0.55

0.5

0.45

0.4

0.35

0.3

0.25

0.6

0.55

0.5

0.45

0471

0.35

0.3

|
500

Il
1000 1500

Time

Il
2000

|
2500

|
3000

0.7

0.65

0.6

0.55

Price

0.5

0.45

0.4

50

L L L L L L L L
100 150 200 250 300 350 400 450 500
Time

Figure 2: Datasets for US dollar/Swiss Franc: training/validation (left) and test (right).

500

Figure

| |
1000 1500

Time

Il
2000

|
2500

|
3000

3500

0.6

0.55

0.5

[}
£0.45F
o

0.4

50

L L L L L L L L
100 150 200 250 300 350 400 450 500
Time

3: Datasets for US dollar/Deutsche Mark: training/validation (left) and test (right).

1.7

1.6

155

15

Price

1.45

1.4

1.35

13

| | | | | | 1 . 25 Il Il Il Il Il Il Il Il Il
0 500 1000 1500 2000 2500 3000 3500 0 50 100 150 200 250 300 350 400 450 500

Time Time

Figure 4: Datasets for US dollar/British pound: training/validation (left) and test (right).

x10° x 10

3 1 1 1 1 1 1 35 | | | | | | | | |
0 500 1000 1500 2000 2500 3000 3500 0 50 100 150 200 250 300 350 400 450 500
Time Time

Figure 5: Datasets for US dollar/Japanese Yen: training/validation (left) and test (right).

testing). Of course, as there is no on-line adjustment of parameters on the test set, all the
models are vulnerable to the effects of non-stationarity in the test sets.

Following [17] we can identify the following sources of variation when evaluating the
generalisation performance of different algorithms:

1. Random selection of test cases.

2. Random selection of training set.

3. Random initialisation of learning method.

4. Stochastic elements in the training algorithm.

5. Stochastic elements in the predictions from a trained method (e.g. Monte Carlo esti-
mates from the posterior predictive distribution).

Rasmussen goes on to describe procedures to estimate the effects of these causes of variation
in order to measure statistically the true significance of differences in generalisation perfor-
mance. Unfortunately, these rely on being able to select training and test data from the
same distribution independently, something which clearly breaks down for time series data.
Hence we will not be able to give results of significance tests for the differences between
the generalisation performance of different algorithms. This is something that we intend to
investigate in the future.

3.2 Results

We used very simple data pre-processing: the training data was normalised to zero mean
and unit variance for the neural network models. The test data was normalised with the
same linear transformation. Although most work in this field models log returns (i.e. log z; —
log z;_1), we found that this gave worse results for the ARIMA models (some of which failed
to converge) so we modelled raw prices throughout. Table 1 contains the generalisation
performance of each model tested.

We had little difficulty with training any of the models with the exception of the Bayesian
treatment of input dependent noise. These networks often converged to local minima, and
when the size of the regression network was increased to 40 hidden units, the Hessian became
singular and the weight vector overflowed. The results in tablel were obtained for a regression
model with 30 hidden units, and a noise model with 10 hidden units.

The generalisation results demonstrate the the Mixture Density Network method per-
forms best on all markets. There is a slight improvement in performance for a model with a
mixture of three Gaussians at the output. Early stopping had very little effect on generali-
sation performance.

The results on the Japanese Yen data were much more varied than for the other currencies.
This was particularly so in the case of the Bayesian treatment, where the log likelihood for
the test set was usually in the order of 10°. The figure given in table 1 is very much an
outlier. This was because the regression network performed very poorly towards the end of
the test set, where the range of inputs lies well outside that in the training data. This is a
particular problem for the RBF network when local basis functions (like Gaussians) are used,

10

Variance

CAD CHF DEM GBP JPY
ARIMA —2271.2 | —1910.4 | —1947.8 | —1525.8 | —4114.0
MLP —2118.6 | —1251.6 | —1889.4 | —1251.6 | —4321.0
MDN 1 centre | —2307.0 | —1928.3 | —2034.66 | —1527.8 | 4780.1
MDN 3 centres | —2342.0 | —1937.8 | —2050.0 | —1518.6 | —4207.2
MDN 5 centres | —2360.4 | —1945.5 | —1816.4 | —1519.3 | —3180.3
Bayesian model | —1553.0 | —1127.5 | —1119.0 | —1440.0 | —67.9
Table 1: Negative log likelihood of test data
x 10" x 102

10

- 97

8l

| |

6L

55

g

al

3l

2l

i I

5‘0 1(50 léO 200 250 850 360 3é0 460 4%0
Time Time

Figure 6: Predicted test data variance for US dollar/Japanese Yen: first 250 points (left)
and second 250 points (right).

since these will extrapolate extremely poorly outside the range of data they were trained on
as their response will be zero. An MLP, which uses linear combinations of its inputs, will
extrapolate in a somewhat more predictable and reasonable fashion. The best answer to this
problem is to detect novel data, and re-train (or adjust) the parameters in the model. Even
for the best model, the predicted test data variance contained some extremely large values,
as can be seen in figure 6. The variance results for the other currencies (figures 7 and 8 are
more in line with expectations.

The structure of the ARIMA models, and the variance parameter for the ARIMA and
MLP models are given in table 2. It is rather surprising to see that the variance for the
ARIMA model (which is the average training set residual) is less than that for the MLP. It
seems likely that this is due to the moving average terms making a significant contribution
to the accuracy of the conditional mean prediction.

Because all the ARIMA models used differencing, we experimented with pre-processing
the data for the neural network models by taking the difference (i.e. z; — z; 1), but it did

11

Variance

Variance

0.6

0.5

0.4

o
w

0.2

0.1

1.6

1.4

1.2

o
)

0.4

0.2

0.25
8
- 1 8
5
>
L L W_MJ L/ LA A Lohe S L L O L L L Il Il Il Il Il Il
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
Time Time
Figure 7: Predicted test data variance for US dollar/Canadian dollar (left) and US dol-
lar/Swiss Franc (right).
x10™
‘ 0.015
| | 0.01]
8
r 1 8
5
>
0.005 b
| | | | | | | | | 1 1 1 1 1 1 Il Il Il
0 50 100 150 200 250 300 350 400 450 500 00 50 100 150 200 250 300 350 400 450 500
Time Time

Figure 8: Predicted test data variance for US dollar/Deutsche Mark (left) and US dol-

lar /British pound (right).

12

| CAD | CHF | DEM | GBP | JPY
ARIMA order (5,1,2) (6,1,1) (6,1,2) (9,1,0) (7,1,2)
ARIMA variance | 4.90 x 10% | 1.57 x 107 | 1.39 x 107° | 1.32 x 10~* | 9.59 x 10~*°
MLP variance | 2.76 X 107° | 9.20 x 10 * | 6.66 x 107° | 9.20 x 10" * | 4.96 x 10" *

Table 2: Model structure

not change generalisation performance to any noticeable degree.

4 Conclusions

This paper has demonstrated that more complex models for the conditional variance for
currency markets can improve generalisation performance. Mixture Density Networks, which
in their most general form can model non-Gaussian conditional probability distributions gave
the most accurate results. Early stopping had little effect on generalisation performance,
which suggests that more principled forms of regularisation may be required. This was why
a Bayesian approach, which has been used successfully on other regression problems, was
tried on this data, but the results proved to be disappointing. This seemed to be mainly
because of the difficulty of fitting the RBF networks: it is likely that the use of non-local
basis functions (as in [8]) would improve this.

There is still scope for improving the models that we use for this problem. Some issues
that we intend to address are:

e Including moving average terms in the neural network models. The only technical dif-
ficulty with this is calculating the relevant partial derivatives efficiently, as the network
structure becomes recursive.

e On-line estimation of variance to cope with non-stationary data. In [14, 11] constructive
on-line algorithms based on RBFs were used to predict the next price in the Deutsche
Mark/French Franc market. These models were able to correct their forecasts after
major shocks much better than a range of alternatives. Generalising this to estimating
the conditional variance as well would give a better assessment of risk shortly after
major changes in market conditions, and would also cope with more gradual shifts in
behaviour.

e Developing methods for deciding a good structure for the variance model. When pre-
dicting the conditional mean, we can use the ACF and PACF (as for ARIMA modelling)
to give some clues to the optimal model structure. We know of no such methods for
conditional variance. It is possible that Automatic Relevance Determination (ARD),
which is a Bayesian approach that has been used for regression problems [10].

It is also likely that high frequency data would exhibit more ‘interesting’ (i.e. less Gaussian,
with a skew or even multi-modal distribution) conditional densities.

13

References

[1] C. M. Bishop. Mixture density networks. Technical Report NCRG /4288, Neural Com-
puting Research Group, Aston University, U.K., 1994.

[2] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, 1995.

[3] C. M. Bishop and C. S. Qazaz. Bayesian inference of noise levels in regression. In
C. von der Malsburg, W. von Seelen, J. C. Vorbruggen, and B. Sendhoff, editors,
ICANN, volume LNCS 1112, pages 59—-64. Springer-Verlag, 1996.

[4] A. N. Burgess and A. N. Refenes. The use of error feedback terms in neural network
modelling of financial time series. In C. Dunis, editor, Forecasting Financial Markets,
chapter 12, pages 261-274. John Wiley, 1996.

[5] G. Cybenko. Approximation by superposition of a sigmoidal function. Math. Control,
Signals and Systems, 2:303-314, 1989.

[6] K. Funahashi. On the approximate realization of continuous mapping by neural net-
works. Neural Networks, 2:183-192, 1989.

[7] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are uni-
versal approximators. Neural Networks, 2:359-355, 1989.

[8] D. Lowe. On the use of nonlocal and non positive definite basis functions in radial basis
function networks. In IEE ANN 1995, pages 206-211, 1995.

9] D.J. C. Mackay. A practical Bayesian framework for back-propagation networks. Neural
Computation, 4:448-472, 1992.

[10] D. J. C. Mackay. Bayesian methods for backpropagation networks. In E. Domany,
J. L. van Hemmen, and K. Schulten, editors, Models of Neural Networks III, chapter 6.
Springer-Verlag, 1994.

[11] Alan McLachlan. Online modelling of time series with resource allocating neural net-
works. To appear in Proceedings of the 4th IMA Conference on Mathematics in Signal
Processing, 1996.

[12] M. Mgller. A scaled conjugate gradient algorithm for fast supervised learning. Neural
Networks, 6:525-533, 1993.

[13] I. T. Nabney, C. Dunis, R. Dallaway, S. Leong, and W. Redshaw. Leading edge forecast-
ing techniques for exchange rate prediction. In C. Dunis, editor, Forecasting Financial
Markets, chapter 10, pages 227-244. John Wiley, 1996.

[14] I. T. Nabney, A. McLachlan, and D. Lowe. Practical methods of tracking non-stationary
time series applied to real world data. In SPIE Conference on the Applications and
Science of Artificial Neural Networks, pages 152-163, 1996.

14

[15] D. A. Nix and A. S. Weigend. Learning local error bars for nonlinear regression. In
Advances in Neural Information Processing 7, pages 486-496. MIT Press, 1995.

[16] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes
in C: The Art of Scientific Computing. Cambridge University Press, 2nd edition, 1992.

[17] C. E. Rasmussen. Evaluation of Gaussian Processes and Other Methods for Non-linear
Regression. PhD thesis, Dept. of Computer Science, University of Toronto, 1996. Avail-
able from http://www.cs.utoronto.ca/"carl/.

[18] P. M. Williams. Using neural networks to model conditional multivariate densities.
Neural Computation, 8:843-854, 1996.

15

