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Chapter 1

Introduction

Stock price prediction is a rather hazardous operation. A good analyst is there-
fore not someone who is always right, but someone who is better at average,
someone who has a higher efficiency than his colleagues.

In the last few years it has become clear that neural networks have become
part of this class of analysts. Neural networks are programs that are based on
the geometry of the human brain. The theory was developed in 1943, when the
first computers were not even produced. The domain of neural networks has
become one of the fastest growing sub-areas in computer science in the last ten
years.

Neural networks are mostly good at recognizing complex patterns. A typical
network receives large numbers of inputs and the expected outputs. It then
searches for the relations between input and output. Once the computational
rules have been found, the network is able to produce outputs on any input,
but an error of a few percent is normal.

On the stock market a lot of information is produced in a short period of
time. A fast response to this information is thus necessary. Most of the research
is done in the area of the analysis of the time series (the prediction of future
values based on stock history). However, the history is not the only factor of
the stock to be predicted: the stock price development of for example Philips
is highly dependent of the development of other electronics companies and of
that of its own derivatives.

Macro-economic parameters on the other hand are much harder to process
for short-term purposes. The cause is that these parameters are not regularly
available. But in long-term management of portfolios, neural networks are very
useful.

Time series analysis is used in many different areas [7]. Our objective in
this particular case is to predict the next value in a time series: the next stock
price.

1.1 Description of the project

This document contains the master thesis project, done by F.W. Op ’t Landt
under supervision of prof. dr. J.N. Kok of Leiden University and ir. M.N.
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Hoevenaars of ING Nederland. The goal of this project is to develop neural
networks, suited for stock price prediction, that is, to predict the stock price
for a number of companies. The predictions will be made using feed-forward
neural networks. The idea is to investigate whether feed-forward networks are
able to make good predictions. The adaptations in the error measures and the
kinds of networks will be considered and the results of these approaches will be
compared.

1.2 Overview

We give an overview of the rest of the thesis. In Chapter 2 a general description
of neural networks is given, followed by a discussion of some kinds of networks
that are suitable for our problem area. In Chapter 3 the technique for devel-
oping a forecasting model will be given and the different steps that have to be
followed will be discussed. In Chapter 4 the data set and the library used will
be described. A few adaptations of the library had to be made: these adapta-
tions will also be discussed. In Chapter 5 the data structures that are used in
the program will be described. The data structures that we use are built by the
library. In Chapter 6 the program for making the predictions is described. In
Chapter 7 the strategies that we used for prediction will be discussed: the stan-
dard technique which uses only a companies own stock, and the leader /follower
technique where prediction for the follower’s stock is based on the stocks of
other companies. In Chapter 8 the results will be given in which some statistics
of the used techniques will be offered. In Chapter 9 a new approach will be
discussed: we will discuss the possibilities and results of ensembles of neural
networks. In Chapter 10 a number of possibilities for improvements will be
given. Subjects for further investigation will be treated as well. The appendix
contains the documentation of the program, including a brief user manual.



Chapter 2

Neural networks

In this chapter a description of neural networks will be given. In section 2.1
the adaptive behavior of neural networks and the computation of units will be
described. Section 2.2 discusses a few types of networks that are suitable for
our problem area.

2.1 Neural computation

The term neural computation refers to computation by artificial neural net-
works. The adjective “neural” indicates that the base of these networks lies
in the field of neuroscience. Biological modeling however, is not of any con-
cern. We want to use the abilities of artificial neural networks, which imitate
the behavior of real neurons. If the term neural network is used, this refers to
artificial neural networks (ANN’s).

2.1.1 Adaptation of neural networks

An interesting property of neural networks is their ability to learn. Most newly
programmed neural networks are not able to perform their task with the desired
accuracy at once. Usually a network’s behavior is adapted in a learning or
training process. During this process the network is iteratively provided with
a set of input patterns together with the corresponding output patterns until
it produces the desired output. This set of input patterns and corresponding
output patterns is called a training set. While training, the network may change
the values of it’s parameters according to the applied learning rule.

The purpose of training a neural network on a certain task depends on an
important assumption. After the training phase the neural network is assumed
to perform its task satisfactory on previously unencountered input patterns: the
training is useful only if the knowledge gained from training patterns generalizes
to other input patterns.

Therefore it is important for the training set to be representative for all
input patterns on which the network will perform its task. Two conditions
have to be fulfilled regarding the representativeness of training patterns:
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e The training patterns must belong to the class of patterns which the
network is expected to process. For example, if we want the network
to predict the value of the next return index of ING, there is no use in
training it on the interest rates.

e The training patterns must be selected from input space according to the
distribution in which all input patterns occur in it. A network can not be
expected to predict correctly when it is trained on a training set with too
many outliers.

The network is usually trained to estimate the function (which is implicit
in the training patterns) as closely as possible. A number of problems can arise
which might prevent the network from learning this function:

e A satisfactory approximation can not be reached by a small network due
to the lack of parameters to express the function.

e The network can suffer from overfitting to certain training examples. It
will perform poorly on other input patterns. This problem can for example
be solved by restricting the number of training cycles and the number of
units in the hidden layer(s).

e Optimization techniques, where a minimization of an error- or cost-function
is wanted, can become trapped in local minima, instead of propagating to
the desired global minimum. Some of the most commonly used learning
rules are believed to stabilize the network in local minima.

Many different types of neural networks have been investigated in the last
few decades. These networks differ in areas such as used types of units, network
topology, applied learning rule, and their behavior. For an overview consult [1].
We want to use feed-forward networks on the stock price prediction problem.
The input patterns will contain a number of different stock values of a company
to produce as output a future value of the company’s stock price.

2.1.2 Computation of units

McCulloch and Pitts proposed in [1] a simple model of a neuron (see figure 2.1)
as a binary threshold unit. Specifically, the neuron model computes a weighted
sum h; = 3 w;;V; of its inputs from other units, and produces a one or a zero.

s> (D~

Figure 2.1: Model of the McCulloch-Pitts neuron
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This depends on the value of the sum: whether it is above or below a certain
threshold. The networks in this project are built from these neurons, which are
connected through unidirectional links. Each link has a value, the weight of the
link. Each unit produces a continuous valued activation V;. The activation of
a unit is

Vi = f(Q_wijVi — 6:) = f(hi — 6;)
J

where f(h) denotes the activation or transfer function. We will omit 6;
because this threshold value can be simulated by a link from a fixed-value unit.
Now we can make a classification of units based on their transfer function:

e Threshold units incorporate a threshold function. The activation func-
tions are restricted to 1 or 0, as stated before. For optimization techniques
on an error- or cost-function a continuous differentiable transfer function
is desirable. These units have continuous valued activations.

e Linear units use a function f(h) = h.

e Non-linear units are most commonly used in gradient descent learning.
These units mostly have sigmoid transfer functions, such as f(h) = tanh(h)
or f(h) = —=.

14e=h

The three different transfer functions are shown in figure 2.2

[
[y
[y

0 /‘ 0 0
threshold linear sigmoid

Figure 2.2: Three different transfer functions

2.2 Feed-forward networks (FFNs)

In this section we will describe some neural network methods for time series
analysis. The section is structured as follows. In a number of sections we discuss
different approaches based on neural networks.

First the possibilities of feed-forward networks for time series analysis will
be discussed. Then the properties of recurrent networks will be explored. Re-
current networks resemble layered feed-forward networks and are also suitable
for the use on time series. We will discuss this approach in sections 2.2.5 and
2.2.6. The properties of ensembles of networks will be discussed in chapter 9.
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2.2.1 Feed-Forward networks with time-windows

Layered feed-forward networks are often called perceptrons. Figure 2.3 shows
two typical examples of perceptrons. There is a set of input terminals whose
only role is to feed input patterns into the rest of the network. After this layer
there are one or more intermediate layers of units, followed by a final output
layer from which the result of the computation is read. Every unit feeds only
the units in the next layer.

(a):éf:f: (b)?%ff

Figure 2.3: Perceptrons. (a) A simple perceptron which (by definition) has only
one layer. (b) A two-layer perceptron.

The function g is the activation function of the units. The function g is usually
nonlinear. The main advantage of nonlinear activation functions is that they can
keep the output between fixed bounds. Multi-layer networks can solve problems,
using these nonlinear functions, which they can not solve when they use linear
units. The output is an explicit function of the input; the input is propagated
through the network and produces the output right away. Often continuous-
valued units (with g a continuous and differentiable function) are considered.
It is possible to construct a cost function E[w]| which measures the system’s
performance error as a differentiable function of the weights w = {w;;}. We can
then use various optimization techniques, such as gradient descent, to minimize
this error measure.

Feed-forward networks can be used for the prediction of the next value in
a time series. The idea is to offer not only the present input, but also N — 1
previous inputs to the network, together called a “time window”. In a number
of applications good results have been obtained with this kind of networks [1].
A drawback is that the number of input units is proportional to N, resulting in
extra weights to be updated during training. Another disadvantage is the fixed
value of N. The performance may depend heavily on the choice of the value of
N. We have decided to experiment with a number of different values for N.

We have experimented in addition with the error measure. It is also possible
to preprocess the input. These are the topics of the next two subsections.

Different error measures

Learning is based on an error measure. The idea is that the smaller the error
measure or cost function is, the better the weights w;; of the network are.
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Given the error measure function E[w]|, we can improve on a specific set of
weights (wg) by sliding down hill on the surface it defines in w space. Specif-
ically, the usual gradient descent algorithm suggests changing each w;; by an
amount Aw;j, inverse proportional to the gradient of E at the present location.

Often the mean squared error is used, but there are many alternatives. If
we take N to be the number of samples in the data set, the mean squared error
(MSE) is defined by:

N

MSE = % > (0" —TH)?,

pn=1
where O is the produced output and T is the expected output.
If training with the standard error measure, described above, turns out to be
too slow or not adequate, alternative error measures can be used. Examples
include the prediction of change in direction error, or POCID error. If the target
value is greater than the previous target value in the series, then the output
value must be at least equal to the previous output (and vice versa; see figure
2.4). The POCID error is the total number of errors relative to the total number
of predictions N.

1 N
POCID=—S'D
N ; t

where

D :{ 1 if (tar(t) — tar(t —1)) - (o(t) —o(t — 1)) < 0
t 0 otherwise

The POCID lies always between 0 and 1.
The goal is to minimize the POCID error.

Value

?4

Time —»

Figure 2.4: Prediction Of Change In Direction. A POCID error occurs if the
target and the predicted value change in opposite directions (one increases, the
other decreases). The errors are marked by the arrows.
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The error described above can be used to train the network. Only if an output
changes in the opposite direction of the target (D; = 1), the entire error is
used to calculate the weight change. Otherwise, only a fraction of the error is
back-propagated. We propose to experiment with the different error criteria,
in particular with the POCID error.

Preprocessing

Another possibility for improving the feed-forward network approach is pre-
processing of the input data. We can filter the input data in many different
ways, for example using Wavelet transformations or taking the local averages
of the data using different Gaussian functions, for smoothing the data.

It is also possible to train the parameters of the filters. In this way we
can try to find optimal filters for the data, and the best approximations of the
wanted output.

2.2.2 Radial basis networks

Recently, variations on feed-forward networks have been proposed [13]. A radial
basis network is a feed-forward network that uses a different kind of transfer
function in the first hidden layer (e.g. Gaussian functions). In this way a net-
work is better able to explore features. Radial basis networks are similar to
feed-forward networks, but radial basis networks train more rapidly, while ex-
hibiting not so much of back-propagation’s training pathologies such as local
minima problems [1]. They have one major disadvantage however: after train-
ing they are generally slower to use, requiring more computations to perform a
classification approximation.

2.2.3 Network construction algorithms

A different approach is to have “self-building” neural networks. This type of
network constructs its own architecture while training the new added units on
the input data. The Group Method of Data Handling (GMDH) [12], [5] belongs
to this category, and has already been applied to the stock price prediction
problem by the ING. Two alternatives can be investigated: Cascade-correlation
and non-linear lower dimensional representation (NLDR) networks.

Cascade-correlation is a supervised learning algorithm which builds a neural
network as part of the learning process. The algorithm consists of the iteration
of two phases: output unit training and hidden unit training.

The output units receive input from all input and hidden units. In the
first phase, output unit weights are trained to minimize the sum squared error
measure. Once this training process levels off, a final epoch is run to record the
residual error for each unit on each training pattern. If the error remains above
a certain threshold, a new hidden unit is inserted.

The new hidden unit receives input from the input units and all previously
created hidden units. Thus, the hidden units form a cascade. The new hidden
unit weight is trained to maximize the sum of the magnitude of the correlation
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between output values for each pattern and the residual error from the previous
output training phase. See figure 2.5 for an example.

output units

hidden units

input units

Figure 2.5: Example of cascade-correlation

NLDR networks use a technique for recoding multidimensional data in a
representation of reduced dimensionality. For scalar time series data, a common
technique is phase-space reconstruction by embedding the time-lacked scalar
signal in a higher dimensional space. The idea is to reduce the dimensionality of
a set of input data in a non-linear way. By using this reduction, the correlation
between the data is also reduced. See figure 2.6 for an idea of how this network
works.

Auto associator

O O O O O  Output

I

O O Decoding layer

4} Hidden layer
O O O "bottleneck”

4} (representation layer)
O O O Encoding layer

1

O OO OO Input

Figure 2.6: A network capable of non-linear lower dimensional representations
of data
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2.2.4 Sub networks

In a number of applications we have to deal with heterogenity: that is, we
need different subnetworks for certain parts of the data. It is a good idea to
investigate whether this is also the case for the stock time series by using feed-
forward networks in combination with the Least Vector Quantization (LVQ)
algorithm of Kohonen. The LVQ algorithm clusters the input data, and sends
it to the appropriate subnetwork.

2.2.5 Simple recurrent networks (SRNS)

The topology of SRNs is similar to that of a layered feed-forward networks, but
there are additional feedback connections that make the network suitable for
the use on time series. A SRN typically consists of one input, one context, one
hidden, and one output layer. The context layer receives feedback from a higher
layer (i.e. closer to the output layer) or from itself and it provides the network
with information about previous activations of certain units. However, the
weights are set to fixed values, and only the weights on the forward connections
are trained using for example the standard back-propagation algorithm. We
plan to investigate whether SRNs and which type of SRNs can be used for our
purposes.

There are many different architectures possible for this kind of networks,
and we can use genetic algorithms to find it. This genetic algorithm can train
and test different networks in parallel on the nCUBE supercomputer and select
the best one for the stock price prediction problem.

2.2.6 Fully recurrent networks

The difference between SRN’s and fully recurrent networks is that a fully recur-
rent network includes direct or indirect loops of connections, and the weights on
these connections can be learned. Examples of such networks are Hopfield and
Boltzman networks. Training can be difficult, and time consuming. However, if
the feed-forward networks do not give the desired results, this might be a good
alternative.

2.2.7 Remark

For most of the proposed alternatives of the feed-forward network the core of
the code can be re-used. The adjustments between the different approaches on
the level of code are not too big.

2.2.8 Consideration

In this project we will not try all of the proposed kinds of networks. FFNs
with time-windows will be used for our problem. We will experiment with the
different error measures (MSE and POCID) and the size of the learning set.



Chapter 3

Developing a forecasting
model

There is a large amount of interest for the use of neural networks in the domain
of stock price prediction [6], [11], [12]. The neural networks can be retrained
from time to time with the latest data, for example including earnings results
and interest rates.

3.1 Development of a neural network

There are many steps in building a forecasting model, as stated in [11]:

1.

Decide on what your target is and develop a neural network (following
these steps) for each target.

2. Determine the time frame that you wish to forecast.

3. Gather information about the problem domain.

4. Gather the needed data and get a feel for each inputs relationship to the

© 0 N O ot

10.
11.
12.

target.

Process the data to highlight features for the network to discern.
Transform the data as appropriate.

Scale and bias the data for the network as needed.

Reduce the dimensionality of the input data as much as possible.

Design a network architecture (topology, number of layers, size of layers,
parameters, learning paradigm).

Go through the train/test/redesign loop for a network.
Eliminate correlated inputs as much as possible, while in step 10.

Deploy the network on new data and test it and refine it as necessary.

In the next subsections some of the steps mentioned above will be examined in

more detail.

15
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3.1.1 The target and time frame

First we have to choose the target. The target of our neural network is to
predict values of the stocks. Another possibility is to predict the direction of a
certain index, if we want to give an evaluation for a number of companies. In
that case the direction of the company’s index is important, not the exact price
index.

Another decision has to be made: the size of the time frame. A neural
network model for a short-term prediction is harder to create than for a longer
term prediction. The seemingly random, chaotic variations at smaller time
scales, and the appearance of market noise might explain this. The macro
economic forces that, on the other hand, fundamentally move market over long
periods, move slowly. For a given error tolerance, a one-year forecast, or one-
month forecast will take less effort with a neural network than a one-day forecast
will.

For the given problem a short-term prediction will be used. However, for
an investment the expectations in the further future are more important than
those of the near future, so then a long-term prediction should be used. The
adaptations that have to be made to prepare a short-term prediction trained
FFN for long-term prediction are expected to be minimal. It is quite likely that
only the number of input and hidden nodes have to be redetermined.

3.1.2 Domain expertise

To build an effective predictive model of the stock market, or another financial
market, knowledge about the factors that influence the market is required. So
we have to investigate this domain before training the network and retrieving
data.

3.1.3 Gathering data

The data to be used for training, testing and running the network, will be
retrieved from DataStream. DataStream is a provider of stock data for ING.
This provider can offer us a lot of different kinds of data, such as return indices,
interest rates, bonds, etc. of a large number of different markets.

3.1.4 Preprocessing the data for the network

It is possible to preprocess the data before giving it to the neural network. For
example we can use a Wavelet transform to filter out the correlations between
the data, as discussed in chapter 2. This is a rather difficult operation, and if
the network performs good on scaled data, then this is often not necessary.

3.1.5 Finding features in the input data

A possibility is to try to find leaders and followers in the stock market. The
values of some companies can then be used to predict a value for some other
company. For example: there seem to be 18 leaders for the Dutch fund of
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Philips (from [14]). These leaders seem to determine the future value of Philips
by some timeshift. We can use the values of the leaders to predict the stock of
Philips.

3.1.6 Transform the data if appropriate

Besides transformation of the data, it is also possible to scale the data. This
option will be discussed in the next subsection.

3.1.7 Scaling data

The scaling operation which is used by our networks, is implemented as follows:
while loading the data from an input file, the minimum value, maximum value,
mean value, number of values, and standard deviation are determined. First,
the mean value is computed: add each value that is read to mean and divide
by the number of values. If N is the size of the data set, then the standard
deviation is computed by:

sd=— z | £ — mean | .

V z e dataset

Neurons like to receive the input data in a certain input range to be most
effective. Input data which vary between 3 and 110, like the stock price values
of Ahold, will not be useful, since the neurons in the hidden layer have a sigmoid
activation function that squahses large input values to either 0 or 41 (see figure
2.2). So we should choose data within a range that does not saturate, or
overwhelm the neurons. A good idea is to choose inputs from -1 to 1. We can
scale the inputs using the following function:

oo :v’

sd

that is, subtract the average and divide by the standard deviation.

Scaling of the outputs:

, T —min
r=——
maz — 1min

After scaling the inputs will be situated around zero (even rather close to
zero), and the outputs are guaranteed to be between zero and one. This is
exactly what we wanted, because the sigmoid function, which is used for the
activation of the units, is bounded by zero and one (see figure 2.2). After the
output has been produced, it will be scaled back to the actual value (i.e. the
actual prediction value):

z = (' (maz — min)) + min.
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3.1.8 The train/test/redesign loop

Most of the process of determining the best parameters is trial and error. The
different options to find the best fit for the problem have to be explored. The
following steps have to be taken:

Split the data. Divide the data set into a learning set and a testing set.
Use about 80% for the training set, and 20% for the testing set.

Train and test. Start with a network topology and train the network on
the training data. When a satisfactory minimum training error is reached,
apply the trained network on the test data and note the error. Restart
the process with the same network topology for a different set of initial
weights and see if a better error on training and test sets can be reached.
The reason is that the network may have found a local minimum on the
first attempt and randomizing initial weights may lead to a different,
maybe better solution.

Eliminate inputs. Try to reduce the number of inputs, by iteratively
removing an input and noting the best error that can be achieved on the
training and test sets.

Iteratively train and test. Repeat the train and test process to achieve
a better result.

Deploy the network. Use the test set to see how the optimized network
performs. If the error is not satisfactory, the design phase or the train
and test phase has to be re-entered.

Revisit the network when conditions change. The network has to be
retrained, when there is reason to think that new information (relevant to
the problem) can improve the performance of the network. The FFN for
the stock price prediction problem should be retrained at least once a
week, if not on a daily basis. If the network seems no longer to generalize
well with the new information, the design phase has to be re-entered.

Taking these steps, the following parameters have been found to be best for
the FFN designed for our stock price prediction problem (prediction of one day
ahead for Ahold):

number of input units 10
number of hidden units 4
threshold 0.1 or less
eta 1.0
alfa 0.9
randomized starting weights | [—0.01, 0.01]
final MSE 0.01




Chapter 4

Data set

In this chapter the data set is discussed. We will introduce the software and
the data sets. Then a discussion about the size, format and conversion of the
data set will be given. Possibly an adaptation of the code of the library may
have to be made; this is the topic of section 4.5.

4.1 Software

The program that we wrote offers the possibility to build FFNs with a variable
number of input and hidden nodes. There is always one output node, as we only
expect one value for prediction. Furthermore, one can choose the error thresh-
old, learning rate, etc. For the implementation of the FFN the SPRANNLIB is
used [4]. This is a library which contains standard operations on neural net-
works. It was developed by the Pattern Recognition Group of Delft University
of Technology. The library uses the Numerical Recipes in C [10], which we
obtained from Harvard.

4.2 Size of the data set

The data sets will be retrieved from the DataStream provider. ING ITResearch
has a dish antenna which provides real-time data, that for security reasons, are
presented for test purposes with a delay of 15 minutes. However, we will use the
closing price of the funds only. Old data sets are fed into the FFN for training,
while for the prediction of future values the FFN is provided with new data.

The size of the data sets for training can extend to up to 100 Mb. This could
cause memory problems, as the SPRANNLIB loads complete data sets from files
into a pointer structure, in stead of handing parts of it to the FFN.

An earlier program for stock price prediction [12] at ING loaded the data sets
from an Oracle database. In this case the use of embedded SQL is needed, be-
cause the rest of the program is written in C. The data sets reside on the
nCUBE supercomputer, where they can be retrieved by the program. The
nCUBE is a parallel computer, where a program can be run on multiple proces-
sors (always a power of 2).
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We would like to use a similar technique. The problem is that the data have
to be read from files. In our solution the data are placed in an array, from which
the samples are made. In stead of using a pointer structure, the samples are
stored in an array structure as well. This adaptation has increased the (time)
performance considerably.

4.3 Format of the data set

Each line of the data set must contain a date between quotation marks, followed
by a value or NA (Not Available). The date and the value are separated by a
comma, and only one day per line is allowed. The date has the following format:
"dd/mm/yy" or "dd-mm-yy". That is, two positions for the day, two positions
for the month, and two positions for the year. The value may contain a point,
but never a comma. The program demands that all lines contain subsequent
dates, except for the weekends which may be skipped. This means that each
line has the following format:

"dd/mm/yy" this day’s value The date and value of the index
OR
"dd-mm-yy" this day’s value The date and value of the index

The data set may be preceded by any form of comment, provided that the
second position of the line is not a number.

The format of the data sets which are provided by DataStream is appropriate
for our program. The data sets provided by DataStream have the following
format:

"Name" name of enterprise For recognizing the company
"Code" code for enterprise The code for retrieving the data
"Currency" currency The currency of the values

"dd/mm/yy" this day’s value The date and value of the index

An example data set of DataStream:

"Name","ING CERTS."
"Code",531865
"Currency","FL"
"28/02/91" ,NA
"01/03/91" ,NA
"04/03/91",46.75
"05/03/91",47.84
"06/03/91",48.73
"07/03/91",48.24
"08/03/91",48.04
"11/03/91",46.95
"12/03/91",46.75
"13/03/91",46.46
"14/03/91",47.44
"15/03/91",47.84
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If the value for a day is NA, this means that for this day the value was Not
Available. Furthermore each weekend is skipped, and the data are simply given
until the last given date is reached.

4.4 Conversion to SPRANNLIB format

The library (SPRANNLIB) offers the possibility to convert data to SPRANNLIB for-
mat. This function reads the data from one file, converts them to SPRANNLIB for-
mat, and puts them into another. A number of options can be chosen to indicate
the number of input and output values to create, the type of data set, etc.

This is another obstacle, because, considered the huge size of the data sets,
it adds a large amount of time to the time needed to train the FFN.

We have decided not to use this function, but to write an alternative func-
tion instead. This function offers the possibility to use delays of fixed size
between the input data, and a delay between the last input value and the value
to be predicted. The function fills an array with samples, which are all in
SPRANNLIB format.

4.5 Adaptation of SPRANNLIB

SPRANNLIB loads the complete data set into a pointer structure. This may cause
problems with the internal memory, so an adaptation of the code is desirable.
The adaptation of the code involves an extensive investigation of the library:
all uses of the pointer structure have to be replaced. As described above, a new
function has been written, and certain adaptations haven been made. Most
of the standard SPRANNLIB functions could be used, so the adaptations are
limited.

4.6 Training on the data set

Once we have generated a correctly classified and well distributed training set,
we have to offer the samples in random order. If this is not done in random
order, the network is trained initially on the first obtained stock price values and
it will forget these examples further on in the training session. By randomizing
the order of samples, the network will learn values from the first period together
with later samples. In this way we try to keep the network from forgetting
formerly learned features.

4.7 Generalization and memorization

We want the FFN to memorize the offered training samples. In order to check if
the network is not overtrained, a number of test samples is kept aside from the
training set. With these test samples we are able to see whether the network is
able to predict correctly. If the network responds poorly to the test set, we know
that we have overtrained. Otherwise we can say that the network memorized
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the training patterns. In figure 4.1 an arbitrary curve-fitting analogy is shown.
The generalized fit is labeled G, and the overfit is labeled O. In the case of the
overfit any data point outside of the training data results in a highly erroneous
prediction.

Figure 4.1: General (G) versus overfitting (O) of data.

To prevent the network from overfitting, the number of inputs should be re-
duced. The objective is to find the function with the least inputs that fits the
data adequately. We have to be careful with having too many (unimportant)
inputs: the results of the training data may be very good, but the network can
perform extremely poor on the test data.



Chapter 5

Data structures

We use an adapted version of the data structure of the SPRANNLIB [4]. A
summary of the ideas of that paper is given in this chapter. For a more detailed
treatment of the data structures, see [4]. Furthermore, the used data structure
for training, testing and running the network is not apt to the stock price
prediction model. This is caused by the fact that the data sets that ING offers
are much too big to be placed in a file. Another problem that was encountered,
is the fact that the SPRANNLIB has no functions to handle delay between inputs,
or to predict some days, or even more, ahead. Therefore we rewrote this part
of the code for our application. The idea is to upload the data on-line and offer
them directly to the feed-forward network, that is built using functions of the

SPRANNLIB.

5.1 The top level data structure

Network description

Creation/Modification date

Control information

Number of inputs

Number of outputs

Number of units

Number of layers

Number of links

Number of weights

General purpose space

Pointer to first unit

Pointer to last unit

Pointer to weights

Weight 1

Weight n

e | e ) —

Lol L L L L JL L L L LI

Unit m

Next/Previous

|
|
|
|
f

e ———

Next/Previous

|
|
|
|
f

Next/Previous

Figure 5.1: The top network data structure, from SPRANNLIB
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The top of the network data structure (see figure 5.1) is a network header. All
network related functions use a pointer to this data structure on input and all
variables can be accessed from this structure.

A pointer to the first and last unit of the double linked list of units gives
access to the whole network structure. A pointer to a linked list of all weights
is provided for quick access to the weights.

5.2 The unit structure

The units (see figure 5.2) together with the links determine the network topol-
ogy.- The units are arranged in a double linked list. A linked list of links is
connected to each unit. This list specifies the units or input terminals which
are inputs to the units. A second linked list of links determines the units to
which the output is transferred.

A pointer to the unit activation function and units transfer function allows
different types of units to be mixed in the same network. The user can decide
on which function to use. The transfer functions are implemented in a similar
way.

Unit identification

Layer identification

Control information

Input/Ouptut index

Activation function

Unit value/state

Number of inlinks

Number of outlinks

i
(I

- Next

Next

|
|
|
|
|
[ Theta weight
|
|
|
|

General purpose space

[ Pointer to output links

[ Pointer to next unit - T0 next unit

To previous unit <—-| Pointer to previous unit

|
|
|
|
|
|
|
|
|
|
N Pointer to input links |
f
h
|
|

[ Pointers to Act./Der.

Figure 5.2: The unit data structure, from SPRANNLIB

5.3 The link data structure

A link data structure (see figure 5.3) represents a connection from one process-
ing unit to another unit in a network. Each unit contains input links: links
associated with the connections coming to the units, and output links: links
that transfer the unit output to other units. Each link also contains a pointer
to a weight structure, holding the connection strength.
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Link identification

Link identification

Control information

Control information

Pointer to unit

Pointer to weight

Pointer to weight

General purpose space

Pointer to next link

Pointer to next link

|
|
Pointer to unit |
|
|
1
I

|
|
|
|
General purpose space |
}

Figure 5.3: The link data structure, from SPRANNLIB

5.4 The weight data structure

Weights are arranged in a single linked list of weight structures (see figure 5.4).
The weight structure also holds a pointer to a list of previous weight values.
This makes it possible to store the history of the network for studying the
evolution of the weights during training.

Pointer of link structure

\

[ Weight identification

Previous weight |

|
[ control information |

Pointer to history |

[General purpose space |
[ Weight |

[ Pointer to history |

Previous weight |

[ Pointer to next weight |

Pointer to history |

\j

Figure 5.4: The weight structure, from SPRANNLIB

5.5 The unit value structure

The unit value (see figure 5.5) holds the current activation. This structure
holds, among others, the current error, which is used for back-propagation. A
pointer to a history is found here too. This allows the possibility to record a
history of activations.

Figure 5.5: The unit value and history values, from SPRANNLIB

Unit structure

Activation

Activation

Output

Output

Current error

Current error

|
|
|
Pointer to history |

|

|

|
Pointer to history |
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5.6 An example network

An example of the implementation of a 4-2-1 network is given in figure 5.6. In
the example all relevant pointers are shown. These are: pointers from weights
to weights, pointers from unit to unit (except pointers between units in different
layers to maintain overhead), pointers from links to links, pointers from links to
weights, pointers from links to units and the top network structure (Net) with
pointers to the first and last unit.
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Figure 5.6: Example of a 4-2-1 network



Chapter 6

The program

In this chapter the implementation and functioning of the sequential program
will be described. It will be a global description, as special attention will be
paid to the different parameters of the program in the appendix.

6.1 Implementation

For implementation of the feed-forward network a pointer structure is used.
This structure is built by the SPRANNLIB. The data structures are already
discussed in chapter 5. In this chapter it was also mentioned that a new function
had to be built for constructing samples. This new function makes a delay
between input values possible, as well as (in the learning stage) prediction of a
certain number of days ahead.

The program builds a list of learning and a list of testing samples, which
will be offered to the network. The list of learning samples contains the samples
in random order to keep the network from forgetting formerly learned features
(as discussed in chapter 4). The list of testing samples on the other hand are
in time sequence. That is, in the order in which they appear in time.

6.2 The general program

The program offers a number of options to the user, which the user can provide
in a batch file too. After starting up the program, it will perform according to
the wishes of the user. Now a full run of the program will be described, going
through all main features of the program:

e Load the learning data into a table and make a list of samples according
to the desired delay and prediction time.

e Load the testing data into another table and make a list of samples using
the same delay and prediction time.

e Measure the initial performance of the learning and testing set.
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e Perform back-propagation using the mean squared error as stop criterion
for learning, while never exceeding the maximum number of cycles, or
perform back-propagation using a fixed number of cycles as stop criterion.

e Measure the final performance of the learning and testing set.

e Evaluate the testing set. In this function the calculated values are written
to an output file, which thus contains the actual prediction on the testing
set.

e Compute the execution time of the program.

When the program is used for prediction on new values, the network should
be trained up to the date to be predicted, before making a forecast. A new
learning set has to be made, which contains the values up to the desired date.

It is also possible to make an entirely new prediction (i.e. a prediction
where the target is unknown). In this case a different sample should be made,
namely one that contains the inputs only. The testing samples contain the
target value, but for a totally new prediction the value is of course unknown.
When a completely new value has to be predicted, the network that will generate
the prediction is assumed to be trained on the same delay between the inputs
and the same time ahead as the prediction to be made has.



Chapter 7

Strategies for prediction

Many different strategies can be used for stock price prediction. We have tried
two of them. When a prediction of a certain company is desired, one of the
following options can be chosen:

e Stock price prediction using a FFN. This will be called the standard
technique.

e Stock price prediction using the leader/follower technique. The idea is to
give the FFN the leaders as inputs, to produce the value for the follower.

Further options can be provided by training the network on different error
criteria, for example the POCID, which includes direction into the error criterion.
These options will be discussed in the following sections.

We have run the program using the stockdata of Ahold. Therefore, the test
results and used parameters are only representative for this particular com-
pany. In this chapter only a few test results are given to illustrate the different
techniques. We will elaborate on the results in chapter 8.

7.1 Standard technique

The standard technique offers a number of inputs to the FFN. These inputs are
values from one company which are situated within a certain time-window. For
example, we can take 10 values of the company’s history, each with the same
delay in days between one and the following value. These values are processed
through the network to produce a certain output, using the back-propagation
algorithm. In the training phase, a target output will be provided. Based on
the difference between the computed and the expected output, the weights of
the network will be adapted. In this way, a diagram can be produced which
resembles the actual stock. An example diagram is shown in figure 7.1.
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Figure 7.1: The results on data not seen before of the standard technique trained
on the MSE and the actual stock.

7.1.1 Mean squared error

The results that we obtained after training the network on the MSE can be
seen in the next table. The first column indicates the network number. This
number is arbitrary. The next columns give the MSE, normalized MSE, and the
percentage of correct predicted directions for each network. These results were
obtained by simulating one year’s predictions. The stock values of weekdays in
the period of 01/01/96-01/01/97 are given to the network as inputs. We used
a training set of 40 samples. After producing an output value, the window is
moved one day and the network is retrained on the updated training set.

network | MSE | normalized MSE | correct direction
01 21.82 0.0119 46.01%
02 22.11 0.0120 45.25%
03 21.71 0.0118 45.25%
04 25.20 0.0137 46.39%
05 21.59 0.0117 46.77%
06 25.10 0.0136 47.15%
07 21.60 0.0117 45.25%
08 20.45 0.0111 46.77%
09 19.36 0.0105 45.63%
10 24.01 0.0130 48.29%
average | 22.30 0.0121 46.28%

7.1.2 Prediction of change in direction

The results that we obtained after training the network on the POCID can be
seen in the next table. The first column indicates the network number. This
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number is arbitrary. The next columns give the MSE, normalized MSE, and
the percentage of correct predicted directions for each network. These results
were obtained by simulating one year’s predictions. The stock values of Ahold
of weekdays in the period of 01/01/96-01/01/97 are given to the network as
inputs. We used a training set of 40 samples. After producing an output value,
the window is moved one day and the network is retrained on the updated
training set.

network | MSE | normalized MSE | correct direction
01 16.86 0.0092 64.26%
02 20.22 0.0110 68.06%
03 19.35 0.0105 64.26%
04 23.55 0.0128 68.44%
05 20.73 0.0113 65.78%
06 25.76 0.0140 65.40%
07 23.70 0.0129 67.30%
08 27.30 0.0148 66.54%
09 21.62 0.0117 65.02%
10 24.36 0.0132 60.84%
average | 22.35 0.0121 65.59%

The values obtained by training the network with the POCID error can be seen
in figure 7.2. In this approach the direction of the stock is considered more
important than the precise value. We combined the two approaches in order to
keep the prediction close to the actual stock.
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Figure 7.2: The results on data not seen before of the standard technique trained
on the POCID error and the actual stock.
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7.1.3 Conclusion

The standard technique using the MSE as error measure for training, produces
slightly better results if we consider the MSE. The standard technique using the
POCID error measure for training however, performs much better if we consider
the percentage of correct predicted direction. Since the direction of the stock
is more important than the exact value of the stock, training on the POCID is
the best choice.

7.2 Leader/follower technique

The leader/follower technique is based on the idea that the stock of some com-
panies may influence the stock of others. ING did some research on this subject,
and they have found a number of dependencies. The stock used in this docu-
ment is the stock of Ahold. Ahold has been found to be a follower of 30 leaders
in many different areas. Each leader causes an effect in the stock of Ahold.
Let’s assume that some leader has an increase/decrease in its stock some day,
then the stock of Ahold will respond with an increase/decrease some days later.
The number of days between the symptom in the stock of the leader and the
impact on the stock of Ahold is taken as the delay for that leader.

The target value of Ahold is chosen from the Ahold stock history, and the
inputs are taken from the stocks of the leaders accordingly. In this way, the
FFN is trained to react to increases and decreases in the stocks of the leaders of
the fund it is trained on. The rise and fall of the fund will be predicted, based
on the stocks of the leaders.

7.2.1 Mean squared error

The results that we obtained after training the network on the MSE can be
seen in the next table. The first column indicates the network number. This
number is arbitrary. The next columns give the MSE, normalized MSE, and
the percentage of correct predicted directions for each network. These results
were obtained by simulating one year’s predictions. The stock values of Ahold
of weekdays in the period of 01/01/96-01/01/97 are given to the network as
inputs. We used a training set of 40 samples. After producing an output value,
the window is moved one day and the network is retrained on the updated
training set.
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network | MSE | normalized MSE | correct direction
01 22.09 0.0120 69.47%
02 20.87 0.0113 66.41%
03 26.14 0.0142 66.03%
04 23.85 0.0130 69.08%
05 23.73 0.0129 64.89%
06 21.27 0.0116 67.56%
07 24.45 0.0133 68.70%
08 26.51 0.0144 66.41%
09 21.57 0.0117 69.08%
10 26.06 0.0142 69.47%
average | 23.65 0.0129 67.71%

The outputs of the network should be as close as possible to the target values.
Therefore the network is trained on the MSE. An example diagram is shown in
figure 7.3.
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Figure 7.3: The results on data not seen before of the leader/follower technique
trained on the MSE error and the actual stock.

7.2.2 Prediction of change in direction

The results that we obtained after training the network on the POCID can be
seen in the next table. The first column indicates the network number. This
number is arbitrary. The next columns give the MSE, normalized MSE, and
the percentage of correct predicted directions for each network. These results
were obtained by simulating one year’s predictions. The stock values of Ahold
of weekdays in the period of 01/01/96-01/01/97 are given to the network as
inputs. We used a training set of 40 samples. After producing an output value,



34 Strategies for prediction

the window is moved one day and the network is retrained on the updated
training set.

network | MSE | normalized MSE | correct direction
01 31.02 0.0169 66.41%
02 33.36 0.0181 66.41%
03 31.62 0.0172 67.56%
04 36.47 0.0198 65.65%
05 38.45 0.0209 73.28%
06 36.32 0.0197 70.23%
07 36.64 0.0199 67.18%
08 36.93 0.0201 70.99%
09 31.79 0.0173 66.03%
10 34.82 0.0189 73.66%
average | 34.74 0.0189 68.74%

As can be seen in figure 7.4, training on the POCID error pushes the values in
the direction of the actual values. In the former diagram, the prediction cutted
the actual diagram at several places, in stead of following it. Now the prediction
follows the actual diagram in the same way as in the standard technique.
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Figure 7.4: The results on data not seen before of the leader/follower technique
trained on the POCID error and the actual stock.

7.2.3 Conclusion

The leader /follower technique using the MSE as error measure for training, pro-
duces better results if we consider the MSE. The leader/follower technique using
the POCID error measure for training however, performs slightly better if we con-
sider the percentage of correct predicted direction. Apparently training on the
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POCID error (in combination with the MSE) does not increase the percentage of
correct predicted directions when we use the leader/follower technique. Since
the direction of the stock is more important than the exact value of the stock,
training on the POCID is the best choice.

7.3 Error bars

It is possible to compute a confidence interval for each prediction. The idea is
to train a number of networks, take the average prediction of these networks
and then compute the confidence interval.

The purpose of the FFNs that we use for regression is to estimate the un-
derlying mathematical function between input and output variables based on a
finite number of data points possibly corrupted by noise. We have a data set
of paata pairs {Z¥,t*} which are assumed to be generated according to

where £(Z) denotes noise with zero mean.

The output o(%), given a new input vector Z, of a network that is trained on
such a regression task can be interpreted as an estimate of the regression f (%)
(i.e. the mean of the target distribution given input ). What we want to know
for our prediction problem is the accuracy of the estimate of the true regression
(i.e. the regression without noise).

When training a FFN on a particular sample, the weights are adjusted in
order to minimize the error on the training set. Training is stopped when a
certain error threshold had been reached. A set of n networks is trained and
stopped on a certain data set. The output of network 7 on input vector Z* is
written 0;(Z#) = of'. As the estimate of the ensemble of networks for the
regression f(Z) we take the average output

1

S 13
m(Z) = - 2

Confidence intervals provide a way to quantify the confidence in the estimate
m(Z) of the regression f(Z): consider the probability distribution P(f(Z) |
m(Z)) that the true regression is f(Z) given the estimate m(Z).

Assume that the distribution P(f(Z) | m(Z)) is centered around m(Z).
Neural networks are biased estimators. For example, neural networks trained
on a finite number of examples will always have a tendency to oversmooth a
sharp peak in the data. This can be seen in figure 7.2. This introduces a bias,
which should be taken into account to get asymptotically correct confidence
intervals. The hypothesis is that the bias component of the confidence intervals
is negligible in comparison with the variance component.

First-order correct intervals can be derived by assuming a Gaussian distrib-
ution P(f(Z) | m(Z)). The variance of this distribution can be estimated from

the variance in the outputs of the n networks:
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LS (oi(@) — m(@)

n—lz.:1

o) =

Since the distribution is Gaussian, so is the inverse distribution P(m(Z) |
f(Z)) to find the regression m(Z).
Following the procedure, the confidence intervals are:

(&) — Coontidenced (#) < f(&) < M(E) + Coontidenced (F),

where cconfidence depends on the desired confidence level 1 — a.

The confidence level that we use is 0.95, which results in 95% confidence in-
tervals. The factors Cconfidence Can be taken from a table with the percentage
points of the Student’s ¢-distribution with number of degrees of freedom equal
to the number of networks that produced the prediction.

We used 50 networks to produce an estimate of the output. In figure 7.5 a
diagram with errorbars is shown. Another possibility is to draw the confidence
intervals using borders which show the limits of each confidence interval (see
figure 7.6).

Remark

The confidence intervals only indicate the confidence of the real regression. The
actual stock is the real regression including noise. Because of this, the actual
stock sometimes exceeds the limits of the confidence intervals.
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Figure 7.5: Diagram with errorbars to indicate the confidence interval
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Chapter 8

Varying the size of the
learning set

In this chapter the results of varying the size of the learning set will be discussed.
The obtained results will be compared with the results of the naive prediction.
The program builds a FFN, which produces an output based on 10 input values.
We used the stock of Ahold for testing and producing results. The parameters of
the FFNs are set for this specific stock. It is likely that for prediction of the stock
of another company a new optimal parameter setting has to be found. This
is caused by external factors, such as influence of other companies, oil trade,
the frequency of trade in the stock of the company, etc. We will discuss the
results of the two different approaches: standard technique and leader /follower
technique.

8.1 Purpose of the analyses

On the data 263 outputs were produced. The network had to process a pre-
diction for one weekday in 1996, based on the values of the 10 preceding week-
days. To make a prediction, the network is fitted on the preceding 40 weekdays.
Training of the network is stopped, when the percentage of correct predicted
directions decreases.

Each FFN produces the outputs for one year, namely each weekday from
01/01/96 - 01/01/97. For each technique 50 networks are trained. In the
standard technique we have tried to find an optimum for the number of samples
in the training set. The results are displayed in the following sections.

8.2 Naive prediction

An important issue is that the neural networks should outperform naive predic-
tion. The naive prediction takes the last day as predicted value for the current
day. If the naive prediction outperforms the FFNs, then it is useless to produce
outputs by neural networks. The results that were obtained by using naive
prediction are given in the next table. The columns give the MSE, normalized
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MSE, and the percentage of correct predicted directions for each network. These
results were obtained by taking one year’s predictions (01/01/96-01/01/97).

MSE | normalized MSE | correct direction
1.52 0.000826 61.83%

8.2.1 Standard technique

The standard technique takes the 10 preceding weekdays from the stock of
Ahold to predict an output. Then the time-window is moved one day so that
the current day lies within the time-window, and the next day becomes the day
to be predicted. The time-window is of fixed size: when the time-window is
moved, then the first day of the time-window is deleted and a new day is added.

For each of the 263 days the MSE and the percentage of predictions with the
correct direction were determined. A prediction of the value for weekday t has
the correct direction if an increase or decrease was predicted with respect to
the predicted value for weekday #-1, which is the same direction as the actual
difference.

Sizes of time-windows

The FFNs trained on a data set of 40 samples turned out to perform best. This
conclusion is based on the quality of the prediction in terms of MSE, POCID, and
the time needed to predict all 263 values.

The FFNs trained on the complete data set produced outputs with smaller
MSEs, but the execution time of the program increases considerably. Because
of this increase of execution time, we consider this time-window size as unfit
for prediction. In the stock market one has to react very quickly, and the FFNs
that are trained with this time-window do not satisfy the requirements.

When we increased the number of samples in the data set, the FFNs turned
out to decrease in percentage of correct predicted direction, and the execution
time of the program increased (as can be expected). This can be seen in the
following table. In this table the average MSE, POCID, and execution time for
the networks trained on the different time-window sizes are given.

‘ time-window H MSE ‘ POCID ‘ execution time ‘

40 20.68 | 68.32% 4 min
50 27.69 | 65.27% 5 min
75 30.91 | 63.74% 11 min

The diagrams are shown in figures 8.1 to 8.3.
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Figure 8.1: Diagram of networks trained on a data set of 40 samples, standard
technique
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Figure 8.2: Diagram of networks trained on a data set of 50 samples, standard
technique
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Figure 8.3: Diagram of networks trained on a data set of 75 samples, standard

technique

8.2.2 Leader/follower technique

The leader/follower technique is based on the idea that the stock of a company
can be influenced by the stock of other companies. The leader/follower tech-
nique takes the 10 preceding weekdays from the stock of the leaders of Ahold
to predict an output for Ahold. As in the standard technique, the time-window
is moved one day before processing the next output.

As discussed in chapter 7 the predicted stock of a network trained on the
POCID as well as the MSE follows the actual stock better than the predicted
stock of a network trained only on the MSE.

In the previous section FFNs trained on a time-window with 40 samples
turned out to outperform networks trained on more samples. For these reasons
we will only provide the results of the networks trained on the POCID and a
time-window with 40 samples.

| time-window || MSE | POCID | execution time |
\ 40 | 28.55 | 64.50% | 6 min |

The diagram is shown in figure 8.4.



8.3 Conclusion 43

110 T T T T T T T T T T

105

100

95

90

85

value

80

75

70

65

60 1 1 1 1 1 1 1 1 1 1
01/01/96 50 100 150 200 01/01/97
day
Figure 8.4: Diagram of networks trained on a data set of 40 samples,

leader /follower technique

8.3 Conclusion

We have seen that the FFNs that use the standard technique perform much
better than the FFNs that use the leader/follower technique if we consider both
MSE and POCID. The cause is probably that the stock values of the leaders may
deviate too much from the stock value of the follower. This causes the neural
network to produce outputs that deviate from the stock values of the follower.
There is only a slight difference in POCID.

However, the results that we obtain by introducing the leader/follower tech-
nique into the FFNs are worse than we expected. The standard technique ob-
viously performs better. It is possible that better results can be obtained by
using one of the other kinds of networks discussed in chapter 2.

Both techniques outperform the naive prediction, discussed in section 8.2,
if we consider the POCID error. The techniques also outperform the experts
(analysts) of the stock market, who can reach a percentage of approximately
56% on tops. Because the direction is much more important than the exact
value, we can consider the FFNs to be better than the naive prediction.
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Chapter 9

Ensembles of neural networks

In this chapter a comparison between different methods to combine predictions
from neural networks will be given. One of these methods is balancing. This
method is based on the analysis of the ensemble generalization error into an
ambiguity term and a term incorporating generalization performances of indi-
vidual networks. The method is described in [2].

A strategy to prevent a neural network from overfitting, is to stop training
in an early stage of the learning process. The complete data set is split up
into a training set and a validation set. Training is stopped when the error
on the validation set starts increasing. The stability of the networks is highly
dependent on the division in training and validation set, and also on the ran-
dom initial weights and the chosen minimization procedure. This causes early
stopped networks to be rather unstable: a small change in the data or different
initial conditions can produce large changes in the prediction. Therefore, it is
advisable to apply the same procedure several times starting from different ini-
tial weights. This technique is often referred to as training ensembles of neural
networks.

Bagging

With bagging, the prediction on a newly arriving input vector is the average
over all network predictions. Bagging completely disregards the performance
of the individual networks on the data used for training and stopping.

Bumping

Bumping throws away all networks, except the one with the lowest error on the
complete data set.

Balancing

Balancing is an intermediate form of bagging and bumping. Each network
receives a weighting factor «; which depends on the expected performance of
the network on new values. This estimation is based on the performance of the
network on the training and validation sets. The prediction of all networks on
pattern v is defined as the weighted average
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We have to find reasonable estimates for these generalization errors based
on the network performances on validation data. Once we have obtained these
estimates, finding the optimal weighting factors «; under the constraints is a
straightforward quadratic programming problem.

9.1 Simulation

In this section a comparison of the methods for combining the neural network
outputs will be given. The tests were run by M.H. Lamers. The networks used
for combination of the results, are different from the ones used in chapter 8.
The differences and the results are discussed in the following subsections.

9.1.1 Purpose of the analyses

On the data 263 separate neural network analyses were performed. Each of
the analyses had to process the output for one weekday in 1996, based on the
values of the preceding 10 days. To make a prediction, each model is fitted on
40 directly preceding weekdays.

For example: to process a prediction for 29/01/96 based on the 10 preceding
weekdays, a model is fitted on the values of the 40 preceding weekdays (04/12/95
- 26/01/96). Consequently a prediction of the value on 29/01/96 is processed.

The network models

For each analysis 50 neural networks are trained on the appropriate 40 obser-
vations. Each network is a 3-layer network, with 10 input nodes, 4 nodes in
the hidden layer, and 1 output node. The hidden nodes have a tanh transfer
function, and the output node has a linear transfer function.

Training of the network was performed using the back-propagation algo-
rithm, which was extended with the POCID learning rule. The POCID learning
rule states that each step of the back-propagation algorithm can proceed nor-
mally if the direction of the prediction of the current observation was wrong.
If, on the other hand, the direction was correct, then a weaker step of the
algorithm will be done: the learning rate will then be multiplied by 0.1.
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The back-propagation algorithm was stopped after 500 epochs of training,
or if the MSE on the validation set increased for 4 subsequent steps. The learning
rate and momentum parameters were 0.01 and 0.6 resp.

Normalization

To decrease the learning time of the neural networks the data for the analyses
have been normalized. The complete data set has been transformed to its Z-
value:

r — mean

T="7"5D

The resulting data set has an average of 0 and a standard deviation of 1.

Percentage of correct direction

For each of the 263 weekdays of 1996, three collective models were made from
the 50 separate networks for bagging, bumping, and balancing methods. Note
that for each of the 263 days three models were constructed. For each of these
263 predictions the MSE was determined, and the percentage of predictions with
the correct direction.

A prediction of the value for weekday t has the correct direction if an increase
or decrease was predicted with respect to the predicted value for weekday ¢-1,
which is the same direction as the actual difference.

9.1.2 Differences

In this section the differences are discussed and the possible impacts:

transfer functions The FFNs used in this chapter have tanh transfer functions
in the hidden layer and linear transfer functions in the output node. The
FFNs used in chapter 8 contain only node with sigmoid transfer functions
(including the output node). There is no difference in flexibility of the
model caused by the use of tanh in stead of sigmoid functions. The net-
work in this chapter may be slightly less flexible caused by the use of the
linear output node. However, the difference is probably not perceptible.

learning rate and momentum Different values for learning rate and mo-
mentum may cause the FFNs to stop training in a different point of ‘weight-
space’. The impact of this difference is difficult to be estimated.

stop criterion The learning-algorithm of the networks in this chapter uses
a validation stop criterion. The back-propagation algorithm is stopped
when the MSE on the validation set increases in 3 subsequent steps. The
validation data are selected from the training data using the ‘bootstrap-
ping’ algorithm [2]. Furthermore, the back-propagation algorithm is pro-
ceeded for a maximum of 500 epochs. As a result of different stop criteria
the networks may terminate in different configurations. The impact on
the predictions is expected to be rather small.
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normalization The output values for the FFNs in this chapter are normalized
in the same way as the input values (Z-transformation), while in chapter
8 the output values are scaled to the domain [0:1]. This is necessary when
a sigmoid transfer function in the output node is used. This difference has
an effect on the computed MSE for both methods, but it has no impact
on the percentages of predictions in the correct direction. It is possible
to scale the MSEs back to a scale in which a comparison can be made.

learning In this chapter a new FFN is built for each of the 263 weekdays of
1996. In chapter 8 one network is trained for every subsequent weekday.
For the next day the network is trained again, but the time-window has
moved one day. This approach introduces continuity in the method, which
is expected to be positive with respect to time series analysis. The impact
of this difference is expected to be rather small, because the maximum
number of epoch that the FFNs in this chapter are trained is rather large.

9.1.3 Results

The 50 FFN models that have been trained have to be combined to form a col-
lective model. Using this model predictions can be made based on 10 preceding
values. There are three methods to make this combination: bagging, bumping,
and balancing:

individual The average individual generalization error, i.e. the generalization
error we will get on average when we decide to perform only one run. It
serves as a reference with which the other methods will be compared.

bagging The average of the predictions of 50 feed-forward networks is taken
to produce an ensemble output.

bumping The best of 50 feed-forward networks is chosen, based on the best
predictions made on the data in the modeling phase. This network is
taken as the eventual model.

balancing By way of bootstrapping procedures an estimate of the performance
of each of the networks on new data is made. Based on these estimates a
weight is assigned to each network, using quadratic programming, which
optimizes the weighted average of the estimated predictions. The ensem-
ble output is the weighted average of the 50 networks.

The mean MSE of all 263 times 50 FFNs is 8.69. This value has been scaled
back to the scale of the original data.

The results of the bagging, bumping, and balancing methods for combining
the predictions of the 50 networks are expressed in the relative decrease of the
MSE with respect to the MSE of the 50 separate predictions. Because this value
has been computed for each of the 263 selected weekdays, the mean value and
the standard deviation are reported.

Unfair bumping is a unfair method, where the actual value of the concerned
weekday, to determine afterward which one of the 50 networks would have been
the best choice. The results of this strategy are reported for comparison.
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Average decrease of the MSE (sd)
(n = 263)
Bagging 28% (30%)
Bumping 39% (65%)
Balancing 37% (44%)
Unfair Bumping 88% (18%)

In the next tables the number and percentages of correct or wrong prediction of
increase or decrease of the stock price are given. The rows indicate the actual
directions, the columns indicate the according predicted directions. Subsequent
observations which remained the same (no increase, no decrease) are given in a

separate row.

bagging ‘ decrease predicted ‘ increase predicted ‘

decrease 22 (8%) 79 (30%)
no change 5 (2%) 17 (6%)
increase 45 (17%) 94 (36%)

‘ bumping ‘ decrease predicted ‘ increase predicted
decrease 36 (14%) 65 (25%)
no change 9 (3%) 13 (5%)
increase 47 (18%) 92 (35%)

‘ balancing ‘ decrease predicted ‘ increase predicted ‘
decrease 29 (11%) 72 (27%)
no change 10 (4%) 12 (5%)
increase 45 (17%) 94 (36%)

Next table shows the total number of correct and wrong predicted directions
and the number of undefined changes in direction. If a direction is defined

wrong when
(target(t) - target(t-1)) * (output(t) - output(t-1)) < 0

(cf. the “official” POCID definition), then all predictions where target (t)
- target(t-1) = 0 are considered ‘correct’. The results of this approach are

given in the last column.

‘ ‘ correct direction ‘ wrong direction ‘ undefined ‘ POCID ‘
bagging 116 (44%) 124 (47%) 22 (8%) | 138 (53%)
bumping 128 (49%) 112 (43%) 22 (8%) | 150 (57%)
balancing 123 (47%) 117 (45%) 22 (8%) | 145 (55%)

Figures 9.1 to 9.3 show the outputs for each of the three methods. In each
figure the actual stock is shown as well for comparison. The horizontal axis
shows the 263 weekdays between 01/01/96 and 01/01/97, and the vertical axis
shows the values that were predicted by each of the discussed methods.
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Figure 9.1: Output values for bagging
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Figure 9.2: Output values for bumping
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Figure 9.3: Output values for balancing

9.2 Conclusion

The results that we obtain by combining the FFNs perform much better than
the separate FFNs if we consider the MSE. In subsection 9.1.3 we have seen that
we can decrease the MSE considerably by combining the FFNs.

The ensemble of networks produces much worse outputs if we consider the
POCID error compared to the results given in chapter 8, however. Since the
direction of the stock is more important than the exact value, we consider the
separate FFNs of chapter 8 to be better for our purposes.
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Chapter 10

Future work

There are a number of things that can be improved:

e Speed of the program. The program can be speeded up by implementing
a parallel version. Depending on the number of processors being used,
the program can be speeded up considerably.

e Reading data from a database instead of reading them from file. This
should make it easier to use data from different companies, for example
when using the leader-follower technique. This could be done by embed-
ded sqQL.

e Implementing a graphical interface for the user, where the influence of
changing some parameters will directly be depicted in some graphic or
moving tube graph.

e Using the result of the stock price prediction in a wvalue-at-risk model.
This model expresses the chance at loss in one single value. This value
should help investment companies in deciding whether to invest in an
enterprise or not. This indication should be based on more factors of
influence than only the stock price. For example, the overall economy of
the country should be considered, as well as the previous profit or loss of
the examined enterprise.

e For the problem of stock price prediction on a short term basis, the stan-
dard FFN seemed to perform good enough. This is the reason that we
did not program or research the other options. If, however, the results
of the prediction turn out to be unsatisfactory, some of the alternatives
proposed in chapter 2 could be tried.
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Appendix A

Documentation

A.1 Running the program

In this section directions for using the program will be given. The program can
be called by typing forecast. The program name has to be followed by:

e 3 list of options
for example, forecast -c 2500 -e 0.1 -f -h 4 -i -m 0.001 -p -T
-1 AHOLD=1 -0 out.val -t T_AHOLD=1
or
e the name of a batch file which contains the options
for example, forecast batch

These possibilities will be discussed in the following sections.
The program has to be called from the directory where all files with the data
sets reside.

A.1.1 Options

The program can be run by calling forecast followed by a number of options,
which have to meet with some conditions:

-a <alfa> The momentum term of back-propagation. The value must lie be-
tween -1.0 and 1.0 (otherwise an error will be generated).

-¢ <cycles> The maximum number of learning cycles that the network should
perform. The number of cycles must be greater than zero.

-d <delay> The delay between the last input value and the prediction. The
delay must be greater than zero.

-D <thrsh> The threshold to stop training. If the network produces outputs
with an error below the threshold, then training can be stopped. The
threshold should be greater than zero.

-e <eta> The learning rate of back-propagation. The value must lie between
0.0 and 1000 (otherwise an error will be generated).

55



56 Documentation

-f Print the final performance of the network on the learning set and on the
test set.

-F <fname> Perform only a prediction based on the values in fname. The
network will not be trained or tested. It is required to enter a network
filename too, because the prediction can only be done on a trained net-
work.

-h <units> The number of hidden units of the network. The number of hidden
units can influence the performance and learning speed of the network.

-i Print the initial performance of the network.

-I <units> The number of input units. This is the number of values that the
network should take to predict some value in the future. If, however, the
number of learning files is greater than one, the program will take the
number of files as number of inputs. This is to enable the program to use
the leader-follower technique.

-m <val> The mean squared error on which back-propagation will terminate.
If no mean squared error is entered, the program will perform standard
back-propagation and will terminate when the maximum number of cycles
is reached.

-n <fname> The filename of some trained network. This can be used for
prediction only, or it can be trained again.

-p Print the performance of the network after every ten back-propagation cy-
cles.

-P Print all program variables with option.
-q Run the program silently (no messages during training).

-s <units> The number of hidden units in an optional second hidden layer.
Normally, the network has one hidden layer, but a second hidden layer
can be created.

-S <sample> Number of samples to train the network, i.e. the size of the
learning set.

-T Print the CPU-time that the program used.
-u <min> The lower bound for random generator of weights.

-U <max> The upper bound for random generator of weights. The initial
values of the weights will lie between <min> and <max>.

-y Run a simulation of the last year.
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The following options are mandatory:

-1 <fname>=d One filename followed by a delay, or a list of filenames followed
by their corresponding delays and separated by comma’s. These are the
files on which the network will be trained (the learn files).

-0 <fname> The filename of the file to which the predicted values should be
written.

-t <fname>=d One filename followed by a delay, or a list of filenames followed
by their corresponding delays and separated by comma’s. These are the
files on which the network will be tested. The number of test files must
be equal to the number of learn files. They must be presented to the
program in the same order and must have the same delay.

A.1.2 Batch file

Another possibility for running the program is to call forecast followed by
a batch file. This file contains all options discussed in subsection A.1.1. An
example batch file:

hunits = 4
iunits = 10
cycles = 10000
delay = 1
thrsh = 0.075
options = 302
eta = 0.5

alfa = 0.9
sunits = 0
samples = 75
minunif = -0.01

maxunif = 0.01
final_mse = 0.0001
learndata AHOLD=1
outtest = out.val
netfname = NULL
testdata = T_AHOLD=1

We will now give a list of correspondences between the used option names and
the options given in subsection A.1.1.

hunits -h <units>

iunits  -I <units>

cycles -c <cycles>

delay -d <delay>

thrsh -D <thrsh>

options one or more of of -f, -i, -p, -P, -q, -T, -y

this results in a number (see next table)



58 Documentation

eta -e <eta>
alfa -a <alfa>
sunits -s <units>
samples -S <sample>
minunif -u <min>
maxunif -U <max>

final mse -m <val>
learndata -1 <fname>=d
outtest -0 <fname>
netfname -n <fname>
testdata -t <fname>=d

The ’options’ field must contain a value. Next table provides the possible values
for the ’options’ field, together with their meanings. To get a combination of
these options, one has to add the values for the desired options.

value | meaning

2 | Print the performance of the network after every ten back-propagation
cycles. (-p)
4 | Print the initial performance of the network. (-i)
8 | Print the final performance of the network on the learning set and on
the test set. (-f)
32 | Print the CPU-time that the program used. (-T)
128 | Run the program silently (no messages during training). (-q)
256 | Print all program variables with option. (-P)
512 | Run a simulation of the last year. (-y)

Standard technique

For the standard technique we need only one file for the learning set and one
file for the testing set. The filenames of the data sets have to be followed by '=’
and a delay. The delay is the number of days between each input value in the
samples. For example, if the delay is one, then subsequent days will be used
for constructing the input vector. It is important that the delay of the testing
set equals the delay of the learning set.

An example of a batch file which contains the options for the standard tech-
nique:

hunits = 4

iunits 10

cycles = 10000
delay =
thrsh
options
eta = 0.
alfa = 0.
sunits =

1
0.075
= 302
5

9
0
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samples = 75
minunif -0.01
maxunif 0.01
final_mse = 0.0001
learndata AHOLD=1
outtest = out.val
netfname = NULL

testdata = T_AHOLD=1

Leader/follower technique

For the leader/follower technique we need multiple files for the learning set and
multiple file for the testing set. If the leader/follower technique is used, then
the first file of the list is considered to be the one that has to be predicted. The
filenames of the data sets have to be followed by '=’ and a delay. The delay
that is indicated is the found number of days between an increase/decrease of
a leader and the reaction of the follower. It is important that the delays of the
testing sets equal the delays of the learning sets for each file.

An example of a batch file which contains the options for the leader/follower
technique:

hunits = 4
iunits = 10
cycles = 10000
delay = 1
thrsh = 0.075
options = 302
eta = 1.0

alfa = 0.9
sunits = 0
samples = 40
minunif = -0.01
maxunif = 0.01

final_mse = 0.0001

learndata = AHOLD=1,LEADER1=3,LEADER2=5,LEADER3=1,LEADER4=5,
LEADERS5=1,LEADER6=3,LEADER7=2,LEADER8=5

outtest = out.val

netfname = NULL

testdata = T_AHOLD=1,T_LEADER1=3,T_LEADER2=5,T_LEADER3=1,
T_LEADER4=3,T_LEADER5=1,T_LEADER6=3,T_LEADER7=2,T_LEADER8=5

A.2 Data sets

The program has to be called from the directory where all files, which contain
the data sets, reside. Each line of the data set must contain a date between
quotation marks, followed by a value or NA (Not Available). The date and the
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value are separated by a comma, and only one day per line is allowed. The date
has the following format: "dd/mm/yy” or ”dd-mm-yy”. That is, two positions
for the day, two positions for the month, and two positions for the year. The
value may contain a point, but never a comma. The program demands that all
lines contain subsequent dates, except for the weekends which may be skipped.
This means that each line has the following format:

"dd/mm/yy" this day’s value The date and value of the index
OR
"dd-mm-yy" this day’s value The date and value of the index

The data set may be preceded by any form of comment, provided that the
second position of the line is not a number.

The data sets can be retrieved from the DataStream provider. ING ITResearch
has a dish antenna which provides real-time data, that for security reasons, are
presented for test purposes with a delay of 15 minutes. The format of the data
sets which are provided by DataStream is appropriate for our program. The
data sets provided by DataStream have the following format:

"Name" name of enterprise For recognizing the company
"Code" code for enterprise The code for retrieving the data
"Currency" currency The currency of the values

"dd/mm/yy" this day’s value The date and value of the index

The files which are provided by DataStream have the following format:

"Name","ING CERTS."
"Code",531865
"Currency","FL"
"28/02/91" ,NA
"01/03/91" ,NA
"04/03/91",46.75
"05/03/91",47.84
"06/03/91",48.73
"07/03/91",48.24
"08/03/91",48.04
"11/03/91",46.95
"12/03/91",46.75
"13/03/91",46.46
"14/03/91",47.44
"15/03/91",47.84

This format is suitable for the program. The first three lines will then be
skipped by the program. Or the user could delete the first three lines.
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