Appears in Australian Conference on Neural Networks, ACNN 96, Edited by Peter Bartlett, Anthony Burkitt, and Robert Williamson, Australian National
University, pp. 16-21, 1996.

Function Approximation with Neural Networks and Local Methods: Bias,
Variance and Smoothness

Steve Lawrencef Ah Chung Tsoi, Andrew D. Back!
{lawrence,act,back}@elec.uq.edu.au

Department of Electrical and Computer Engineering
University of Queensland, St. Lucia4072 Australia

Abstract

We review the use of global and local methods for estimating
a function mapping R™ = R" from samples of the func-
tion containing noise. The relationship between the methods
is examined and an empirical comparison is performed using
the multi-layer perceptron (MLP) global neural network model,
the single nearest-neighbour model, a linear local approxima-
tion (LA) model, and the following commonly used datasets:
the Mackey-Glass chaotic time series, the Sunspot time series,
British English Vowel data, TIMIT speech phonemes, build-
ing energy prediction data, and the sonar dataset. We find
that the smple local approximation models often outperform
the MLP. No criterion such as classification/prediction, size of
the training set, dimensionality of the training set, etc. can be
used to distinguish whether the MLP or the local approxima-
tion method will be superior. However, we find that if we con-
sider histograms of the k-NN density estimates for the train-
ing datasets then we can choose the best performing method a
priori by selecting local approximation when the spread of the
density histogram is large and choosing the MLP otherwise.
This result correlates with the hypothesis that the global MLP
model is less appropriate when the characteristics of the func-
tion to be approximated varies throughout the input space. We
discuss the results, the smoothness assumption often made in
function approximation, and the bias/variance dilemma.

1 Introduction

The problem of learning by example can be considered equiva-
lent to a multivariate function approximation problem in many
cases [22], ie. find a mapping R™ = R™ given a set of ex-
ample points. It is common and convenient to decompose the
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problem into n mappings to R*. We are most interested in
the case where the datais high-dimensional and corrupted with
noise, and when the function to be approximated is believed
to be smooth in some sense. The smoothness assumption is
required because the problem of function approximation (espe-
cialy from sparse data) isill-posed and must be constrained.

Function approximation methods fall into two broad categories:
global and local. Global approximations can be made with
many different function representations, eg. polynomials, ra-
tional approximation, and multi-layer perceptrons [8]. Often a
single global model is inappropriate because it does not apply
to the entire state space. To approximate afunction f, a model
must be able to represent its many possible variations. If f is
complicated, there isno guarantee that any given representation
will approximate f well. The dependence on representation can
be reduced using local approximation where thedomain of f is
broken into local neighbourhoods and a separate model is used
for each neighbourhood [8]. Different function representations
can be used in both local and global models as shown in table
1

| Globa models | Local models |
Linear None
Polynomial Weighted average
Splines Linear
Neural networks Polynomial
Splines
Neural networks

Table 1: Global and local function approximation methods.

2 Neural Networks

It has been shown that an MLP neura network, with a single
hidden layer, can approximate any given continuous function



on any compact subset to any degree of accuracy, providing
that a sufficient number of hidden layer neuronsis used [5, 17].
However, in practice, the number of hidden layer neurons re-
quired may be impractically large. In addition, the training al-
gorithms are “ plagued” by the possible existence of many local
minimaor “flat spots’” on the error surface. The networks suffer
from “the curse of dimensionality”.

3 Local Approximation

Local approximation is based on nearest-neighbour techniques.
An early use of nearest-neighbours was in the field of pattern
classification. Fix and Hodges [9] classified new patterns by
searching for asimilar patternin astored set and using the clas-
sification of theretrieved pattern as the classification of the new
one. Many papers thereafter suggested new rules for the clas-
sification of a point based on its nearest-neighbours (weighted
averages, etc.). For function approximation, the threshold au-
toregressive model of [27] is of some interest. The model ef-
fectively splits the state space in half and uses a separate linear
model for each half. The LA techniques considered here can
be seen as an extension to this concept where the space is split
into many parts and separate (non-)linear models are used in
each part. LA techniques have a number of advantages:

¢ Functions which may be too complex for a given neura net-
work to approximate globally may be approximated.

e Rapid incremental learning is possible without degradation
in performance on previous data (necessary for online applica-
tions and models of biological learning).

¢ Rapid cross-validation testing is possible by simply excluding
pointsin the training data and using them as test points.

However, LA techniques can exhibit poor generalisation, slow
performance, and increased memory requirements:

e Slow performance. The most straightforward approach to
finding nearest-neighbours is to compute the distance to each
point which is an O(N) solution. This can be reduced to
O(logN) by using a decision tree. The K-D tree is a popu-
lar decision tree introduced by Bentley [2], which is a gener-
alisation of abinary tree to the case of k keys. Discrimination
is still performed on the basis of a single key at each level in
the tree, however, the key used at each level cycles through all
available keys as the decision process steps from level to level.
Bentley givesan algorithm for finding m nearest neighboursin
k-dimensional space requiring logan nodes to be visited and
approximately m2* distance calculations [12]. The K-D tree
is known to scale poorly in high dimensions - significant im-
provements can be found with approximate nearest neighbour
techniques[1].

e Memory requirements. This problem can be partialy ad-

dressed by removing unneccesary training data from regions
with little uncertainty.

Determining the optimal number of neighbours to use is dif-
ficult because the answer usually depends on the location in
the input space. Some possibilities include: &) using a fixed
number of neighbours, b) using as many neighbours as can be
found within afixed radius, and c) clustering the data and using
a number of neighbours equal to the number of points in each
cluster. In general, the approaches vary from the simplest case
which ignoresthe variation of the function throughout space, to
more complex algorithms which attempt to select a number of
neighbours appropriate to the interpolation scheme and the lo-
cal properties of the function. Thisis not simple - using asmall
number of neighbours increases the variance of the results un-
der the presence of noise. Increasing the number of neighbours
can compromise the local validity of amodel (eg. approximat-
ing acurved manifold with alinear plane) and increase the bias
of results. Thisisthe classic bias/variance dilemma[25] which
adesigner often faces.

Algorithms such as: classification and regression trees (CART)
[3], multivariate adaptive regression splines (MARS) [11], ID3
[23], and the hierarchical mixtures of experts (HME) algorithm
of Jordan and Jacobs [18], are local approximation models
where the input space is divided, at training time, into a hierar-
chy of regions where simple surfaces arefit to the local data.

3.1 Interpolation

The type of local model used controls the method of interpo-
lation between the neighbours. Typically, only simple models
have been used. We list some possibilities, in order of complex-
ity.

1. Nointerpolation - the test output is equal to the closest train-
ing point output.

2. Weighted average - the output for the test point isequal to the
average of the output of the k nearest-neighbours. This average
isusually weighted inversely by the distance from the test point
[7]. Weighted averages have been used extensively (eg. [26])
and analysed extensively (eg. [15]).

3. Linear models - the group of nearest-neighbours is used to
create alocal linear model. This model is then used to find the
desired value for anew point. One example, which we use | ater,
is given by Casdagli [4]:
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where a;, ¢ = 0,1,... are constants, k is the number of
neighbours, and n is the dimension of the input vector x;,
i =1,2,...,k. The parameters o, i = 0,1,...,k are found
by using ordinary least squares.

Weighted regressions to fit local polynomial models have been
used by many people for classification (eg. [20]). Recently,
they have also become popular for approximation. Farmer and
Sidorowich [8] have used local polynomia modelsfor forecast-
ing but have only had success using low order models.

4. Non-linear models. One example is splines. Mhaskar
[21] has used tensor product b-splines for local approximation.
Standard results in spline approximation theory can be used.
Any non-linear model is a candidate for local approximation
models and hence we may even use multi-layer perceptrons.

4 Simulations

In order to investigate the relation between the methods in
practice, we have performed simulations with the following
datasets:

1. The Mackay-Glass equation. The Mackey-Glass equation

is atime delay differential equation first proposed as a model
of white blood cell production [19]: 42 = % — bx(t)
where the constants are commonly chosenasa = 0.2, b = 0.1
and ¢ = 10. The delay parameter — determines the behaviour
of the system. For = > 16.8 the system produces a chaotic
attractor. We have used 7 = 30. Our dataset consisted of 3000

training patterns and 500 test patterns.

2. Vowel data. Speaker independent recognition of the eleven
steady state vowels of British English using a specified training
set of 10 LPC derived log area ratios [24].  There are 528
training patterns and 462 test patterns.

3. Sunspot data. Sunspots are dark blotches on the sun and
yearly averages have been recorded since 1700 [10]. In this
example, 220 samples are used for training, and the remaining
60 for testing.

4. Sonar data. Discrimination between sonar signals bounced
off ametal cylinder and those bounced off aroughly cylindrical
rock, as used in [16]. 103 patterns have been used in both the
training and test sets.

5. Speech data. This dataset consists of the phoneme “aa”’
extracted from the TIMIT database and arranged as a num-
ber of sequences: prior phoneme(s), current phoneme, next
phoneme(s). Raw speech data was pre-processed into a se-
quence of RASTA-PLP framest. The analysis window (frame)

1RASTA-PLP is a technique of feature extraction which incorporates per-
ceptua characteristics.

was 20ms, the window step size was 10ms, i.e., the analysis
window overlaps the succeeding frame by half aframe, and the
order of PLP used was 9 - creating 10 feature values per frame
(the power of the segment of signal in the frame together with 9
RASTA PLP coefficients). The phonemes were extracted from
speakers coming from the same demographic region. Multiple
speakers were used and the speakers used in the test set were
not contained in the training set. The training set contained
2000 frames, where each phoneme is roughly 10 frames. The
test set contained 2000 frames, and an additional validation set
containing 2000 frames was used to control generalisation.

6. Building energy data. This dataset was problem A of the
“Great energy predictor shootout” contest?. There are 14 inputs
(time, temperature, humidity, etc.), 3 outputs (energy predic-
tions), 2104 training points, 1052 validation points, and 1052
test points.

Simulations have been performed using a single nearest-
neighbour model, the local linear approximation model given
earlier with a range of neighbourhood sizes, and an MLP®
using a range of hidden node numbers. For the multi-
layer perceptron we used the tanh activation function, and

a search then converge learning rate schedule [6]: 1 =
s 10 . — where n = learning rate,
/3 maz (e (R ez

mas (1,(c; - 221 (ioca M) )

7o = initial learning rate = 0.1, N = total training epochs,
n = current training epoch, ¢; = 50, co = 0.65. Target out-
puts were scaled by 0.8. We used stochastic update (ie. the
parameters are updated after every pattern presentation as op-
posed to batch update where the parameters are only updated
once per compl ete pass through the training set). Weights were
initialised from a set of random candidates based on training
set performance. An input window of 6 time steps was used for
these problems: Mackey-Glass, Sunspots, Speech. Four simu-
lations using different random seeds were performed for each
MLPtrial.

5 Reaults

Table 2 and figure 1 show the results of our ssimulations. We
have shown the classification error for the classification prob-
lems and the NMSE for the remainder. Comparing the LA
methods to the MLP, we observe that each method performs
best on three out of the six problems and there are significant
differences between the results obtained with each method. The
LA methods perform best on the Sonar, Mackey-Glass, and

2“The Great Energy Predictor Shootout” - The First Building Data Analy-
sis And Prediction Competition; ASHRAE Meeting; Denver, Colorado; June,
1993.

b = f (Z?Zal w}ciyé_l) where ! isthe output of neuron & in layer

1, Ny isthe number of neuronsin layer [, w}m is the weight connecting neuron
k inlayer I toneuronz inlayer I — 1, yé = 1 (bias), and f is commonly a
sigmoid function.



Sunspots problems while the ML P performs best on the Vowel,
Building, and Speech problems.

It appears to be difficult to make concise conclusions about the
results. If we look at the size of the datasets, the dimension-
ality of the datasets, the degree of noise, etc. we do not find
a common factor with which we could have a priori selected
either the MLP or the LA methods and found the same best so-
lution. However, it is known that MLPs do not respond well
to isolated data points [28] (meaning points in the input space
where the density of the training data is very low compared to
other areas), hence we may expect the global MLP methods
to be less appropriate if the training data has a lot of points
where the density of the data is low. Furthermore, it is harder
for aglobal MLP model to adapt to differing density through-
out the input space than it isfor an LA model. Figure 2 shows
k-NN density estimates® [13] of the training datasets for k = 3.
The estimates have been normalised so the median (a statis-
tic insensitive to outliers) estimate is 1. The graphs for those
datasets where the best performing model is based on the LA
approach are characterised by a greater spread of the the indi-
vidual density estimates (ie. the density of the data varies more
as we move around the input space). The vowel dataset does
not appear to follow this rule as clearly. However, if we rank
the spread of the datasets according to the interquartile range®
of the density estimates we obtain: Building 0.42, Speech 0.82,
Vowel 1.1, Sonar 1.3, Sunspots 1.4, Mackey-Glass 1.8. The
best performing method for the models in this order is: MLP,
MLP, MLP, LA, LA, LA. Hence, for the datasets we have used
here, the spread of the density estimates can be used to distin-
guish whether the MLP or LA method will be superior. We note
that we expect a general criterion for selecting the best method
a priori to also include characteristics such as: dimensionality
and size of the training set, nature of the function which must
be approximated, amount of noise, etc.

For the vowel dataset, we note that the difference between the
MLP and LA methods is small compared to the other datasets.
We also notethat the size of thelocal neighorhood and the num-
ber of hidden nodes in the best models is correlated with the
size of the training data sets.

6 Discussion and Open Issues

The bias/variance dilemma, which has been well covered in the
literature (eg. [14]), can help explain the varying results of the
different methods. Dividing data into regions can decrease the
bias of an estimator, but generally increases the variance (con-
sider linear regression where the most peripheral pointsin the

4Computation is based on finding the smallest volume which contains k
neighbours for each point.

5We use the interquartile range because the standard deviation is good for
reasonably symmetrical distributions without outliers.
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Figure 1: Results. The fourth column separates the MLP and LA
models and is empty. The error rates for the 10-NN LA model and the
20-NN LA model on the Mackey-Glass dataset are too small to distin-
guish. The data has been scaled so that al results could be displayed
on the same graph (see table 2 for the numerical values).
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Figure 2: Density estimates. The x-axis represents the density esti-
mates, has alog scale from 0.1 to 1 (center) to 10, and is divided into
anumber of sections. Density estimates are normalised so the median
estimate is 1. The y-axis represents the number of points which fall
into each density section. From top to bottom, the left column shows
the estimates for the Building, Speech and Vowel datasets and the right
column shows the Mackey-Glass, Sunspots and Sonar datasets. An
MLP model is the best performing model for the datasets on the left
and an LA model isthe best performing model for the datasets on the
right.



| TesNMSE | 1-NN | 2NNLA | 3-NNLA | 5NNLA [ IONN-LA | 20NN-LA |
Mackey-Glass | 1.0 x 1072 [ 6.7 x 1073 [ 54 x 1073 [ 5.3 x 107 [ 8.1 x 107% [ 1.9 x 10~°
Building 152 1.46 164 3.98 5.1 141
Sunspots 0.54 0.49 0.42 0.81 0.42 0.24
| TestNMSE | MLP-5 | MLP-10 | MLP-20 |
Mackey-Glass [ 29 x 10~% 5.9x107° [ 27 x10~% 4.7x107° [ 24x10~2 3.9x10°°
Building 0.91 0.022 0.91 0.012 0.90 0.025
Sunspots 0.29 0.0082 0.29 0.018 0.29 0.022
| TestError % | 1-NN | 2-NN LA | 3NN LA | 5-NN LA | 10NN-LA | 20NN-LA |
Speech 311 31 29.9 284 26.7 289
Sonar 5.83 3.88 6.8 5.83 7.77 9.71
Vowel 49.8 50 47.2 47 51.7 55
| TestError% | MLP-5 | MLP-10 | MLP-20 |
Speech 241 12 [ 245 068 | 24 19
Sonar 171 297 | 152 148 | 142 148
Vowel 499 33 | 425 34 | 494 151
| Summary | Inputdimension | Training points | Noise? | Best mode! |
Sonar 60 103 yes 2-NN
Mackey-Glass | 6 (input window) 3000 no 20-NN
Sunspots 6 220 yes 20-NN
Vowel 10 528 yes 10-MLP
Building 14 2104 yes 20-MLP
Speech 6x10 = 60 2000 yes 20-MLP

Table 2: Results of local approximation versus global MLP approximation for six commonly used datasets. 1-NN is single nearest neighbour
approximation, k-NN LA is Casdagli’s local approximation using & neighbours, MLP-n denotes the multi-layer perceptron with n hidden

nodes. Each MLP result is followed by the standard deviation.

input space are the most important points for decreasing the
variance). Local approximation algorithms generally tend to be
variance increasing algorithms which is particularly problem-
atic in high-dimensional spaces where data becomes exceed-
ingly sparse [18]. The bias/variance tradeoff can be controlled
in the multi-layer perceptron using various methods including
controlling the number of hidden nodes (and hence the rep-
resentational power of the network), and weight elimination.
In the k-NN local approximation algorithm used here, bias in-
creases and variance decreases as k increases, due to the sim-
ple local model used. We can use cross-validation to set these
controls over the bias and variance, with different difficulties
in each case. For the local approximation case, we can per-
form leave-one-out validation as discussed earlier, but better
performance can often result from varying the appropriate con-
trol throughout the input space, and estimation becomes diffi-
cult as the sample size decreases. For the MLP, it is generally
impractical to perform leave-one-out validation, leading to the
common practice of using a separate generalisation set, which
means withholding potentially useful information during model
construction. Additionally, the effects of local minima may be
important.

It is well known that appropriate pre-processing of data can
produce a significant difference in performance. For both neu-
ral network and local approximation solutions, better accuracy
will be obtained when the function that must be approximated is
smooth in some sense. For neural networks, and &l local mod-
elsinvolving curvefitting, smoothness is an assumption usually
made by researchers. Hence, it is important to know whether
the function we are trying to approximate is smooth. A smooth-
ness criterion can be formulated for a differentiable function,
eg. J(f) = [, (f™(t))2dt for one dimension, or JZ (f)
m!

2
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for multiple dimensions. However, we generally do not have a
differentiable function because thisis what we are trying to es-
timate. Smoothness criteria for a dataset exist - eg. the rough-
ness and outlier indexes of Watson [29]. However, these re-
quire the use of the natural neighbour order of the data. Natural
neighbour order is based on calculation of the Voronoi tessel-
lation which is impractical for dimensions greater than about
10. How, then, can we relate the dataset smoothness to the
smoothness of the required function approximation? One pos-
sibility isthat the smoothness can be quantified by considering



the accuracy at which local models with a defined smoothness
property fit the training data. Local linear models may perform
better when we are trying to approximate a function which is
too complex for a given neural network.

Major problemswith global neural network solutionsinclude a)
local minimaor “flat spots” - asthe network size (and hence the
number of parameters) is increased, accuracy often decreases
due to the training algorithm becoming stuck in local minima
or “flat spots’, b) excessive training time, and ¢) computational
expense or dataset size reduction in order to perform accurate
cross-validation for controlling the bias/variance tradeoff. Ma-
jor problems with local approximation include &) interpolation
in sparse, high dimensional spaces, and b) appropriate selec-
tion of local neighbourhoods and appropriate interpolation at
all times. These are open issues for further research.

7 Conclusions

We have reviewed the use of globa and local methods for es-
timating a function mapping R™ = R™. We have examined
the relationship between the methods in light of the smooth-
ness assumption, and the bias/variance dilemma. We have per-
formed an empirical comparison using the multi-layer percep-
tron (MLP) global neural network model, and local approxima-
tion models on a number of commonly used datasets covering
both classification and prediction problems.

In order to find an a priori method to determine whether the
global non-linear MLP approach or the local-linear approxi-
mation approach would be superior we considered histograms
of k-NN density estimates for the training datasets. For the
datasets we considered, we found that local-linear approxima-
tion performs better when the spread of the histogram is greater
(ie. the density of the function to be approximated varies more
as we move around the input space).
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