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1. Introduction

Neural Networks – originally inspired from Neuroscience – provide powerful models for statis-
tical data analysis. Their most prominent feature is their ability to “learn” dependencies based
on a finite number of observations. In the context of Neural Networks the term “learning”
means that the knowledge acquired from the samples can be generalized to as yet unseen
observations. In this sense, a Neural Network is often called aLearning Machine. As such,
Neural Networks might be considered as a metaphor for an agent wholearns dependencies
of his environment and thus infers strategies of behavior based on a limited number of obser-
vations. In this contribution, however, we want to abstract from the biological origins of Neural
Networks and rather present them as a purely mathematical model.

The paper is organized as follows: In Section 2 we will summarize the main results of Sta-
tistical Learning Theory which provide a basis for understanding the generalization properties
of existing Neural Network learning algorithms. In Section 3 we will introduce basic concepts
and techniques of Neural Network Learning. Then, in Section 4, we will give an overview
of existing applications of Neural Networks in Economics. Recently, however, the ideas from
Statistical Learning Theory, as introduced in Section 2, have lead the way to the so called
Support Vector learning, which will be described in Section 5 for the task of classification.
Finally, in Section 6 we leave the review track and present a state–of–the–art application of this
technique to the problem of learning the preference structure from a given set of observations.
In contrast to cardinal utility theory our approach is based on ordinal utilities and requires as
input only objects together with their respective relation (i.e. preference ranking). Throughout
the paper, we will support the theoretical arguments by examples.
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2. Statistical Learning Theory

Before studying the principles of Neural Network learning, we will give some results from
Statistical Learning Theory (Vapnik, 1982; Pollard, 1984; Vapnik, 1998). These results will
provide insights into the problems encountered when trying to learn from finite samples. To
make the following definitions more transparent, we start with a simple example regarding the
classification of bank customers (Feng and Michie, 1994).

Example 1 (Classification). A bank is confronted with the task of judging its customers ac-
cording to their reliability of paying back a given loan. To this end the bank collects information
in the form ofn measurable properties (features) of the customers, e.g. age, sex, income� � � .
Let us denote each feature by a variableXi � R. Then each customer is completely described
by ann–dimensional vectorx � �x�� � � � � xn� � X � R

n . We call the spaceX the input
space since all customers considered are represented as points in this space. Together with the
description of its customers the bank records for each customer if he pays back his loan (y � �)
or not (y � ��). The space of all possible outcomes of the judgments is often called theoutput
space Y and in the present case has only two elements. The bank is now equipped with a finite
sampleS � f�xi� yi�g

�
i�� of size�. The purpose of classification learning is — based on the

given sampleS — to find a functionh � X �� Y that assigns each new customer (represented
by a vectorx) to one of the classes “reliable” (y � �) or “unreliable” (y � ��). To find such a
mapping — usually calledclassifier —, the bank assigns a risk to each hypothesish. Here the
risk of each classifierh is the probability of assigning a customerx to the wrong class, that is
to classify a “reliable” customer to be “unreliable” and vice versa. Statistical Learning Theory
makes this risk more explicit by assuming a probabilityPXY that a randomly chosen customer
(taken from the spaceX) is reliable (y � �) or unreliable (y � ��). Let the cost of assigning
a customer to class�y whereas the true class isy be given by

L�y� �y� �

�
� y � �y
� y �� �y

� (1)

This so calledzero–one loss represents one of the simplest ways of quantifying the cost of
a classification error. In particular (e.g. economic) applications, other possibly more specific
losses may be preferable that take into account the real economic cost associated with an error.
The expected value ofL overPXY — often called the expectedloss — is the probability of
misclassification. More formally, therisk functional

R�h� �

Z
XY

L�y� h�x��PXY �x� y� dx dy (2)

is the quantity to be minimized from the viewpoint of the bank. Since the bank is only given
the finite sampleS (training set), only theempirical risk (training error) is accessible

Remp�h� �
�

�

X
�xi�yi��S

L�yi� h�xi�� � (3)
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Let us consider a setH of classifiersh which is calledhypothesis space. In the context of
Neural Network Learning one possible choice ofH is the set of parameterized functions
h�x��� � sign���x� � � � � � �nxn� which is called aperceptron (Rosenblatt, 1962). This
classifier is described by a parameter vector� � ���� � � � � �n�

� and the task of learning reduces
to finding a vector�� that minimizesR�h������ without extra knowledge aboutPXY . As will
be shown later in this section, minimizingRemp�h������ is – under certain circumstances to
be described — a consistent way of minimizingR�h������. This principle is calledEmpirical
Risk Minimization. In the following we will abbreviateh����� by� andH � fh�����j� � 	g
by 	.

The Learning Problem To summarize the relevant results from the last example, we can
formulate the task of statistical learning as follows: Given a finite sampleS � f�xi� yi�g

�
i�� �

X � Y and a hypothesis spaceH � fh�����j� � 	g we want to find�� such that

�� � argmin���R���

� argmin���

Z
XY

L�y� h�x����PXY �x� y� dx dy (4)

while no knowledge except the sample is given aboutPXY .
Empirical Risk Minimization In Vapnik and Chervonenkis (1971) a principle is formu-

lated which can be used to find a classifier�� whose performance is close to the one of the
optimal classifier�� — independently of the used hypothesis space and any assumptions on
the underlying probabilityPXY . The principle says that choosing�� such that

�� � argmin���Remp���

� argmin���
�

�

X
�xi�yi��S

L�yi� h�xi���� (5)

leads to the set of parameters�� that minimizes the deviationjR���� � R����j — under
conditions explicitly stated in the paper. Since this principle can be explained as “choosing that
classifier�� that minimizes the training error or empirical risk respectively”, this principle is
known asEmpirical Risk Minimization (ERM). Although this principle had been used years
before, Vapnik and Chervonenkis (1971) gave an explicit explanation of its applicability.

Generalization Let us recall what exactly the differencejR���� � R����j measures. In
view of Neural Network Learning, this difference is often called generalization error. We can
bound the generalization error above by

jR�����R����j 	 jR�����Remp��
��j�max

���
jR����Remp���j � (6)

where the second term is greater or equal tojR���� � Remp����j. Although�� is uniquely
defined by Equation (4),�� strongly depends on the randomly drawn training setS. Thus, we
have to boundmax��� jR��� � Remp���j. What is available from the data, however, is the
empirical riskRemp���. This implies that we should aim at minimizing the empirical risk
while ensuring that the abovementioned generalization error remains small. Solely minimizing
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the empirical risk can lead to what is known as overfitting in the Neural Network community:
The training data are well fit but no relieable predicition can be made with regard to data not
contained in the training set.

The Basic Inequality Note from Equations (4) and (5) that if	 contains a finite number of
possible classifiers, the principle of choosing�� to approximate�� is consistent. Consistency
means that the generalization error (6) can be bounded with probability one if� tends to infinity.
This is due to the Law of Large Numbers, sinceR��� is the expectation of the loss of� and
Remp��� is the mean of the loss of� which converges uniformly to the expectation indepen-
dently of the distributionPXY . Problems occur if we consider an infinite set of classifiers like
in the abovementioned example. For this case, Vapnik and Chervonenkis proved the following
basic result

P

�
max
���

jRemp����R���j � �

�
	 
 exp

��
c��ln

��
c�

� ��

�
� ��

�
�

�
� (7)

where� is the number of training examples andc� is a constant depending on the investigated
set of functions. It is called Vapnik–Chervonenkis–dimension (VC dimension) of	 and is a
measure of the capacity of the set of hypotheses under consideration. If we set the right–hand
side of the inequality to the confidence�, solve for�, and drop the lower bound we get the
following corollary: For each classifier� � 	 considered during the learning process, the
inequality

R��� 	 Remp��� �

s
c��ln

��
c�

� ��� ln ��


�
(8)

holds with probability�� �. For the learning problem this means that the expected riskR���,
which is the quantity of interest, can be bounded above by a sum of two terms: the empirical risk
Remp���, which can be calculated from the training set, and a capacity term which accounts
for the complexity of the hypothesis spaceH in relation to the number of training examples. In
this context, Empirical Risk Minimization as described above attempts to minimizeRemp���
while keeping the capacity term fixed. The goal ofmodel selection is to find a trade-off between
the explanatory power and capacity control of the Neural Network. In order to allow for a better
understanding of the capacity consider the following two definitions on the VC dimensionc�.

Definition 1 (Shattering). A subset x�� � � � �xn � Xn is shatteredby the set of functions 	, if
for each of the �n possible class labelings (yi � � or yi � ��) there exists a function � � 	
that classifies the examples in this way.

Definition 2 (VC–dimension). The VC–dimensionc� of a set of functions 	 is the maximum
number of elements x�� � � � �xc� � Xc� that can be shattered by the set of functions 	.

Let us consider a simple example in order to understand the concepts of shattering and VC
dimension.
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Example 2 (Shattering and VC–dimension). Let us examine the functions from the last ex-
ample, that is all classifiers of the formh�x��� � sign�x��� � � � �� xn�n� andn � �. Now
consider the setx� � ��� ��� andx� � ��� ���. Then for each of the 4 different labelings there
is a vector� that can separate the two points, that is the setx��x� can be shattered by these
classifiers (see Figure 2). Hence, the VC–dimension of these classifiers is at leastc� � �. It
can easily be verified that there exists no set of three points inR

� that can be shatter by these
classifiers. Thus, the VC–dimension of these classifiers is exactlyc� � �. Note, that there are
also sets of two points, that cannot be shattered, e.g.x� � ��� ��� andx� � ��� ���.

x2
2

1

1 2

α

x1

x2

2

1

1 2

x1

α
x2

2

1

1 2

x1

α x2
2

1

1 2

x1

α

Figure 1. Shattering of a set of two pointsx��x� by linear decision functions. All points in the halfspace to which
the arrow points are labeledy � �.

Structural Risk Minimization Vapnik (1982) presented a new learning principle, the so
calledStructural Risk Minimization (SRM), which can easily be justified by Inequality (8). The
idea of this principle is to definea priori nested subsets	� � 	� � � � � � 	 of functions and
applying the ERM principle (training error minimization) in each of the predefined	i to obtain
classifiers�i

�. Exploiting the inequality, one is able to select that classifier�i
�

� which minimizes
the right hand side of (8). Then the learning algorithm not only finds the best classifier in a given
set of functions but also finds the best (sub)set of functions together with the best classifier. This
corresponds to the model selection process mentioned earlier.

Prior Knowledge Let us make some remarks about prior knowledge. Without prior knowl-
edge no learning can take place since only the combination of single instances and previous
knowledge can lead to meaningful conclusions (Haussler, 1988; Wolpert, 1995). For a finite
set of samples there exists an infinite number of compatible hypotheses and only criteria that
are not directly derivable from the data at hand can single out the underlying dependency. In
classical statistics, prior knowledge is exploited in the form of probability distributions over
the data (Likelihood principle) or over the considered functions (Bayesian principle). If these
priors do not correspond to reality, no confidence can be given by any statistical approach
about the generalization error (6). In Neural Network learning, the explicit knowledge is re-
placed by restrictions on the assumed dependencies (finiteness of VC–dimension). Therefore,
these approaches are often called worst–case approaches. Using SRM, the prior knowledge is
incorporated by thea priori defined nesting of the set of functions. For practical purposes, this
is less restrictive than the distribution assumptions of classical statistical approaches.
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3. Algorithms for Neural Network Learning

In this section we give an overview on different types of Neural Networks and on existing
algorithms for Neural Network learning. The aim is to highlight the basic principles rather
than to cover the whole range of existing algorithms. A number of textbooks describe relevant
algorithms in more detail (see Haykin, 1994 or Bishop, 1995).

3.1. FEED–FORWARD NEURAL NETWORKS

In the past and due to its origins, the termNeural Network was used to describe a network
of “neurons” (i.e. simple processing units) with a fixed dynamic for each neuron (Rosenblatt,
1962). Such a viewpoint should indicate the close relationship to the field of Neuroscience. We
want to abstract from the biological origin and view Neural Networks as a purely mathematical
models. We limit our attention to those Neural Networks that can be used for classification and
focus on feed–forward networks�. In these networks computations are performed by feeding
the data into then units of an input layer from which they are passed through a sequence
of hidden layers and finally tom units of the output layer. In Baum (1988) it was shown,
that (under some mild conditions) each continuous decision function can be arbitrarily well
approximated by a Neural Network with only one hidden layer. Let us denote the number of
units in the hidden layer byr. Hence, it is sufficient to consider a network described by

h�x��� � f��f��x������ � (9)

wheref� � Rn �� R
r andf� � Rr �� R

m are continuous functions.� � ������ is the vector of
adjustable parameters, consisting of� which is the vector of weights of the hidden layer and
� being the weight vector of the output layer. For illustrative purposes it is common practice
to represent each unit where a computation is being performed (“neuron”) by a node and each
connection (“synapse”) by an edge of a graph. An example of a two layer Neural Network is
shown in Figure 3.1. In the following we will make the functionsf� andf� more explicit to
derive different type of Neural Networks and their respective learning algorithms.

Perceptron and the Delta Rule Consider the simple caser � n�m � �� Y � f�����g� f��x��� �
x, andf��x��� � sign�

Pn
i�� �ixi� � sign���x�. This type of Neural Network is called a

perceptron and was mentioned earlier in Example 1. Learning in such a network reduces to
finding the vector� � � that minimizesRemp��� (see Section 2). We will consider here only
the case that there exists a vector� such thatRemp��� � �, i.e. linear separability. Let us

rewrite the empirical risk of a vector� asRemp��� � �
�

P�
t��Remp���xt� where

Remp���xt� 
 �sign���xt�� yt�
� � (10)

To minimize this functional one can use the so calledDelta rule (Rosenblatt, 1962) which is
similiar to a stochastic gradient descent (e.g. Hadley (1964)) on the empirical risk functional.

� Note, that in particular dynamical system are often modelled by recurrent Neural Networks (Hopfield and Tank,
1986). We will not consider these here because they do not offer new insights into the problem of classification and
preference learning. See, e.g., Kuan and Liu (1995) or Haykin (1994) for a textbook account.
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input
layer layer layer

hidden output

(n units) (r units) (m units)

Figure 2. A sketch of a two layer Neural Network with input spaceX � R
n � R

� , hidden neuron spaceRr � R
�

and output spaceY � R
m � R

� . Note, that the input layer does not count as a computational layer.

Starting with an initial guess��, the following iteration scheme is used

�t�� � �t �
�

�
�sign���txt�� yt�xt (11)

The following pseudo–code gives an overview of the learning procedure�.

Perceptron Learning

�� := randomly initialized,t := �
do

classify each training examplexi using�t

if xi is misclassifiedthen

�t�� := �t � yixi, t := t� �

end if

while misclassified training examples exist

Multilayer perceptron and Backpropagation The addition of hidden neurons increases the
VC dimension of the network and thus leads to more powerful models of the data. For the case
of a two–layer perceptron one choosesf��x��� � �g���

�
�x�� � � � � g���

�
rx��

� andf��z��� �
g���

�z�, wherez is ther–dimensional vector of hidden neuron activations,� � ���� � � � ��r�
�,

andg� � R �� R andg� � R �� R are the “transfer” functions of the neurons. Usually these are
differentiable sigmoidal functions, e.g.,gi�a� � tanh�c � a�. This type of Neural Network is
called amultilayer perceptron (MLP). In the case of classificationm � � andY � f�����g.
Since in the last layer a continuous activation functiong� is used, it becomes necessary to map
the continuous output to a binary decision. This can be done by thresholding the continuous

� Note, that ifxi is misclassified,yi � � �
�
�sign���

ixi�� yi��
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ouput, e.g., sign�h�x���� 	�. Again, learning in such a network reduces to finding the vector
� � ������ that minimizesRemp��� (see Section 2). Using

Remp���xt� 

�

�

�
�g�

�
� rX

j��

�jg�
�
��jxt

	
A� yt



A

�

�
�

�
�h�xt���� yt�

� (12)

one calculatesr�Remp���xt� andr�j
Remp���xt� to apply gradient descent. Note that (12)

relates to the fraction of misclassified objects, forc ��. Successive application of the chain
rule of differentiation gives

r�Remp���xt� � �h�xt���� yt�g
�
���

�zt�zt (13)

r�j
Remp���xt� � �h�xt���� yt�g

�
���

�zt�g
�
���jxt�xt � (14)

whereg� denotes the first derivative ofg w.r.t. its argument, andzt � f��xt���. The following
pseudo–code gives an overview of the resultingbackpropagation learning procedure.

Backpropagation Learning (MLP Networks)

�� � ������� �r������
� := randomly initialized


� := �, t := �
do

�old := �t

for each training examplexi calculateh�xi��t� andzi � f��xi��t�
�t�� := �t � 
t�h�xi��t�� yi�g

�
���

�
tzi�zi

�j�t�� := �j�t � 
t�h�xi��t�� yi�g
�
���

�
tzi�g

�
���j�txi�xi

t := t� �, 
t := ��t

while k�t ��oldk � �

In the beginning the learning rate
t is large so as to enable the algorithm to find a good
minimum of the empirical riskRemp���. In the course of learning
t is decreased in order
to allow for the fine tuning of the parameters. This is the basic principle used to learn the
adjustable parameters� of a MLP given a finite sampleS � f�xi� yi�g

�
i�� without exploiting

further prior knowledge. More refined methods exist if prior assumptions are made about the
type of the surfaceRemp��� over the space of�, e.g., conjugate gradient learning (Hestenes
and Stiefel, 1952; Johansson et al., 1992), momentum learning (Rumelhart et al., 1986), or
Quickprop (Fahlman, 1989). Moreover, backpropagation can easily be extended to more than
one hidden layer, in which case its recursive nature trough the layers becomes apparent.

Radial Basis Function Networks. Another popular Neural Network architecture is ob-
tained forf��x��� � �g��x���� ���� � � � � g��x��r� �r��

� andf��z��� � g���
�z� whereg� �

R
n � R

n � R �� R is a function that acts locally in the�j, g� � R �� R is a sigmoidal
function like in the MLP,z is the r–dimensional vector of hidden neuron activations, and
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� � ����� ���� � � � � ��r� �r��
�. This type of Neural Network is called aradial basis function

network (RBF). Usually the functiong��x��j � �j� is given by a Gaussian of the form

g��x��j � �j� � exp

�
�
kx� �jk

�

���j

�
� (15)

Again, we consider the case of binary classification. Similiarly to backpropagation the empiri-
cal risk becomes

Remp���xt� 

�

�

�
�g�

�
� rX

j��

�jg�
�
xt��j � �j

	
A� yt



A

�

(16)

In order to apply gradient descent, we calculate the gradientsr�Remp���xt�,r�j
Remp���xt�,

andr�jRemp���xt�. Successive application of the chain rule of differentiation yields

r�Remp���xt� � �h�xt���� yt�g
�
���

�zt�zt �

r�j
Remp���xt� � �h�xt���� yt�g

�
���

�zt� exp

�
�
kxt � �jk

�

���j

�
xt � �j

��j
�

r�jRemp���xt� � �h�xt���� yt�g
�
���

�zt� exp

�
�
kxt � �jk

�

���j

�
kxt � �jk

�

�	j
�

The following pseudo–code gives an overview of the backpropagation learning procedure for
RBF Networks (Powell, 1992). In Section 5 we will present another learning algorithm that
can be used for RBF Networks.

RBF Network Learning

�� � ������� �r���������
� := randomly initialized


� := �, t := �
do

�old := �t

for each training examplexi calculatedh�xi��t� andzi � f��xi��t�
�t�� := �t � 
t�h�xi��t�� yi�g

�
���

�
tzi�zi

�j�t�� := �j�t � 
t�h�xi��t�� yi�g
�
���

�
tzi� exp

�
�
kxi��j�tk

�

���j�t

�
xi��j�t

��j�t

�j�t�� := �j�t � 
t�h�xi��t�� yi�g
�
���

�
tzi� exp

�
�
kxi��j�tk

�

���j�t

�
kxi��j�tk

�

��j�t

t := t� �, 
t := ��t

while k�t ��oldk � �
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3.2. LOCALITY AND REGULARIZATION

Global vs. local approximation The main conceptual difference between MLP’s and RBF
networks is that the former perform a global approximation in input space while the latter im-
plement a local approximation. The hidden neurons of an RBF network specialize to localized
regions in data space by fitting a set of Gaussians (“receptive field”) to the data. In the extreme
case, wherer � �, i.e. there are as many hidden neurons as data points in the training set,
the ERM principle cannot lead to consistent learning because such an RBF networks can be
shown to have infinite VC dimension. Using fewer neurons than data points, however, speeds
up convergence during learning. In contrast to the local approximation performed by RBF
Networks an MLP considers the data space as a whole and is thus able to capture complex
dependencies underlying the data. The hidden neurons in both, the MLP and the RBF, perform
a preprocessing of the data by learning a mapping of the input space to the space of hidden
neurons. We will meet this idea later again when considering the extension of Support Vector
Learning to the nonlinear case (see Section 5). The advantage of preprocessing the data is
the reduction of their dimensionality. This problem may arise when the input data are of high
dimensionality and thus the input data density is small. This phenomenon is referred to as the
curse of dimensionality, i.e. the increase of necessary samples to obtain a small generalization
error grows exponentially in the number of dimensions (number of parameters in a Neural
Network). This can easily be seen, if one solves Equation (8) for� with � and � fixed and
assuming thatc� scales linearly with the number of parameters.

Regularization Techniques Conceptually, with the techniques discussed in Section 3.1
only the termRemp��� on the right hand side of Inequality (8) is minimized during the
learning process. The Neural Network community also developed approaches that take into
account model complexity as expressed in the second term of the right hand side of (8). In the
case of RBF and MLP’s it was shown that reduction ofk�k� minimizes their VC dimension
(model complexity) (Cortes, 1995; Shawe-Taylor et al., 1996). Bartlett (1998) also showed
that backpropagation learning when initialized with small weights leads to a class of functions
with small VC–dimension. Another way to incorporate this into the learning process is to the
minimizeRemp��� � �k�k� where� has to be chosen beforehand. Such a technique is also
calledregularization (Poggio and Girosi, 1990) and was successfully used in theweight decay
learning algorithm (Hinton, 1987). The Support Vector algorithm to be presented in Section 5
makes use of a similar technique.

4. Economic Applications of Neural Networks – An Overview of the Literature

With the application of backpropagation to Neural Network learning (Rumelhart et al., 1986)
and the revived interest into Neural Networks, Economists started to adopt this tool as well,
since the Neural Networks for classification and regression can easily be adopted to economic
problems. It seems reasonable to distinguish at least two major applications of Neural Net-
works in Economics: First, the classification of economic agents, i.e. customers or company,
and second, the prediction of time series. A third, though less common application of Neural
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Networks is to model bounded rational economic agents. Let us review the literature that is
concerned with these three applications in turn.

4.1. CLASSIFICATION OF ECONOMIC AGENTS

As discussed above, one of the main abilities of Neural Networks is to classify a set of data into
different categories. Thus, Neural Networks can be used as an alternative to more traditional
methods such as discriminant analysis or logistic regression	. A special feature of Neural Net-
works that distinguishes them from traditional methods is their ability to classify data which are
not linearly separable
 . The majority of papers that use Neural Networks for classification tasks
in Economics can be found in the area ofbankruptcy prediction of economic agents, mainly
banks. Most of these papers have been published in the early 1990’s, a period that witnessed a
significant rise of bankruptcies in the U.S..

The approach is to use financial ratios calculated from a firm’s balance as input to the
Neural Network to obtain an estimate for the probability of bankruptcy as output. Examples
are Odom and Sharda (1990) and Rahimian et al. (1993) who used five financial ratios that
have been suggested by Altman (1968) for discriminant analysis. Both papers use a two-layer
Neural Network trained using backpropagation as discussed in Section 3.1. They report an
improvement of the classification quality as compared to discriminant analysis. While the latter
classified 60% of the firms correctly, Neural Networks classified 70–80% in the right way. Tam
(1991) and Tam and Kiang (1992) analyzed a Neural Network with 19 input neurons, i.e., they
used 19 financial ratios. In their studies they compared a simple feed forward network with
no hidden layer with a two-layer network trained using backpropagation. The performance
of the latter was better on average than the one of the former. However, both types of net-
works performed on average better than other more traditional classification methods�. Other
applications with similar results are e.g. Poddig (1995), Salchenberger et al. (1992), Altman
et al. (1994), and Erxleben et al. (1992). The latter report “nearly identical” performance for
discriminant analysis and neural networks.

Further discusions of the classification properties are given, e.g., by Brockett et al. (1994)
for insurance companies, Marose (1990) for the creditworthiness of bank customers, Grud-
nitzki (1997) for the valuation of residential properties in the San Diego County, Jagielska and
Jaworski (1996), who applied Neural Networks to predict the probability of credit card holders
to run into illiquidity, or Martin-del Brio and Serrano-Cinca (1995), who classified Spanish
companies into more than one category. Finally, Coleman et al. (1991) suggested an integration
of a Neural Network and an expert system such that courses of action can be recommended to
prevent the bankruptcy. As an overall result, Neural Nets seem to perform well when applied
to economic classification problems and they often appear to be superior to classical methods.

� See the discussion in Ripley (1994). A literature review of traditional methods of Business Evaluation can be
found in Raghupati et al. (1993).

� See the illustration in Trippi and Turban (1990) or Blien and Lindner (1993).
� See, e.g., Tam (1991). The authors compared the performance of NN’s with different types of discriminant

analysis, with logistic regression, with the method of nearest neighbours and with classification tree methods.
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4.2. TIME SERIES PREDICTION

Probably the largest share of economic applications of Neural Networks can be found in the
field of prediction of time series in the capital markets. Usually, linear models of financial
time series (like exchange rates or stock exchange series) perform poorly and linear univariate
models consistently give evidence for a random walk.� This has been taken in favour of the
efficient market hypothesis where efficieny means that the market fully and correctly reflects all
relevant information in determining security prices
. However this hypothesis is not generally
accepted and, therefore, an often followed strategy is to try to use nonlinear models to improve
the fit and thus the prediction� . As mentioned earlier� Neural Networks are flexible functional
forms that allow to approximate any continuous — hence also nonlinear — function. Therefore,
they can be expected to provide effective nonlinear models for financial time series and thus to
allow for better predictions.

One of the first researcher to use Neural Networks in the capital markets was probably
White (1988), who applied a two-layer neural network on a series of length 1000 of IBM
stocks. Rather than to obtain predictions his aim was to test the efficient market hypothesis. He
could not find evidence against it which suggests that a random walk is still the best model for
a financial market. However, the network used in his study was rather simple and, therefore,
a number of authors challenged White’s results. Bosarge (1993) suggested an expert system
with a neural network at the its core. He found significant nonlinearities in different time series
(S&P 500, Crude Oil, Yen/Dollar, Eurodollar, and Nikkei-index) and was able to improve the
quality of forecast considerably. Similar results have been reported by Wong (1990), Tsibouris
and Zeidenberg (1995), Refenes et al. (1995), Hiemstra (1996) or Haefke and Helmenstein
(1996)��.

Other authors reported results that point to the opposite direction. In a survey of the liter-
ature, Hill et al. (1994) report mixed evidence as to forecasting results of Neural Networks,
although they performed “as well as (and occasionally better than)” statistical methods. Mixed
evidence is also reported in a paper by Kuan and Liu (1995) where they compare feedforward
and recurrent Neural Networks as prediction tools for different currency exchange rates. The
same applies to Verkooijen (1996), who linked financial time series to fundamental variables
like GDP or trade balance within a Neural Network. Chatfield (1993) expressed caution as
to comparisons between Neural Networks and linear prediction methods, because often the
chosen linear methods seemed inappropriate. A major problem in the implementation of Neural
Networks as predicting tools seems to be the fact that no objective guidelines exist to choose
the appropriate dimension (i.e. the number of hidden layers or neurons) of the Neural Network,
a problem refered to earlier as the model selection problem. Usually, implementations refer

� See, e.g., the discussion in Meese and Rogoff (1983) or Lee et al. (1993).
� See Fama (1970) or Malkiel (1992) for a discussion.
	 See, e.g., Engle (1982), Granger (1991) or Brock et al. (1991)

 For a detailed discussion on the approximation of nonlinear functions by neural networks see e.g. Hornik et al.

(1989),Hornik et al. (1990), Gallant and White (1992) as well as Kuan and White (1994).
�� See Trippi and Turban (1990) or Refenes (1995) for a number of other papers whose conclusion goes into the

same direction.
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to rules of thumb and to a trial-and-error procedures, although systematic methods have been
suggested such as the Support Vector method to be presented in the following section. See
also Kuan and Liu (1995), Weigend et al. (1992) or Anders and Korn (1997) for a discus-
sions of formalized methods. Thus, as an overall result, it seems that Neural Networks have
the potential to be used as forecasting tools. Their strength can be seen in the prediction of
nonlinear time series. However further results are needed to make them reliable instuments for
the “everyday-forecaster”.

Applications of time series prediction in other than financial fields are Franses and Draisma
(1997) or Swanson and White (1997) for macroeconomic variables, Church and Curram (1996)
for consumers’ expenditure, or Kaastra et al. (1995) for agricultural economics.

4.3. MODELLING BOUNDED RATIONAL ECONMIC AGENTS

A third, less common application of Neural Networks in Economics can be found in the mod-
elling of learning processes of bounded rational adaptive artificial agents. Here, neurons are
interpreted as agents who update their perception of the environment according to the infor-
mation they receive. Their decisions (the output of the neuron) then exert an influence on the
environment which might be fed back to the agent. It was probably Sargent (1993) who first
proposed Neural Networks in this context. Beltratti et al. (1996) argued that Neural Networks
were apt to model human behaviour since they could interpolate between the learned examples
and introduce some degree of uncertainty in their replies. Neural Networks can be seen as an
implementation of the ideas suggested by Arthur (1993).

Cho (1994) used a Neural Network to model strategies for repeated games. He argued in
favour of this tool, because it was capable of capturing complex equilibrium strategies although
instructions were stationary, fixed, simple, and independent of the target payoff vector. Cho
and Sargent (1996), in a revision of the paper by Cho, suggested that agents should be able
to memorize the complete history of the game. This was implemented by an extension of the
input vector (i.e. the dimension of the input space) with every iteration step. However, as they
show, memory could as well be implemented using a recurrent network with an an additional
storage unit in the input layer which includes some summary statistics.

Luna (1996) used Neural Networks to model the emergence of economic institutions. The
Neural Networks allowed to model feedback between a learning environment and the formation
of institutions, and vice versa. Orsini (1996) proposed a Neural Network to model the consump-
tion behaviour of individuals whose expectations about group behaviour played a crucial role
on individual and aggregate outcomes. Packal´en (1998) used a Neural Network to relax the
assumption of linear forecast functions (that is usually made in the adaptive learning literature)
and to extend them to nonlinear functions. He used three different rational expectation models
as benchmarks to show how convergence to rational expectation equilibria can occur.

Thus, in this context Neural Networks can be see as a viable alternative to existing ap-
proaches like cellular automata�� or genetic algorithms��.

�� See, e.g., Kirchkamp (1996).
�� See, e.g., Sargent (1993) or Marks and Schnabl (1999).
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5. Support Vector Networks for Classification

In Section 3 the classical techniques for learning in a Neural Network were described. The
learning techniques described there are essentially based on the ERM principle. In this section
we want to present a new Neural Network learning technique that utilizes the SRM principle,
the so calledSupport Vector Learning. It has been successfully applied in the field of charac-
ter recognition (Cortes and Vapnik, 1995), object recognition (Sch¨olkopf, 1997; Osuna et al.,
1997a), and text categorization (Joachims, 1997).

We start by developing the learning algorithm for the perceptron under the assumption that
the training set can be classified without training error (objects are linearly separable). Then
we extend the learning algorithm to the case where the objects are not linearly separable. Fur-
thermore, by using a technique known as thekernel trick we show how the learning algorithm
can be extended to the (nonlinear) case of MLP’s and RBF Networks.

Case of Linearly Separable Data Consider we want to learn the vector� of a perceptron
(see Equation (9)). Instead of minimizingRemp��� (see Section 3), we assume that there
exist vectors�� which achieve zero training errorRemp���� � �. In order to minimize the
generalization error (6), it follows from the basic Inequality (8) that — everything else being
equal — minimization of the VC–dimensionc� leads to the optimal classifier��. Therefore, in
the spirit of SRM we have to define a structure of nested subsets on the set of linear classifiers
such that we can at least bound their VC dimension above. The following theorem gives such
a structuring for the set of all linear classifiers.

Theorem 1 (VC dimension of hyperplanes (Vapnik, 1995)). Suppose all the data X lives in
a ball of radius D and a training set S is correctly classified by all classifiers

HS � fsign����x�j�� � Rn � Remp���� � �g �

Consider all �� whose norm is bounded by a constant A

k��k 	 A �

Then the VC dimension cHS
of HS is bounded above by

cHS
	 min�dD�A�e� n� � (17)

A proof can be found in (Burges, 1998; Shawe-Taylor et al., 1996; Vapnik, 1998). This
theorem shows that a perceptron can overcome the curse of dimensionality even if the param-
eter space is very high dimensional (Bartlett, 1998). The importance of this theorem lies in the
fact, that minimization of the VC dimension of perceptrons can be achieved by minimizing
k��k� � ��� �� under the restriction thatRemp���� � �. More formally, we arrive at the problem

minimize
�

�
k��k� �

�

�
��� �� (18)

subject to ���xi � �� 
yi � �� (19)

���xi 	 �� 
yi � �� � (20)
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According to the classical technique of nonlinear optimization (c.f. Hadley (1964)), we intro-
duce� lagrangian multipliers� � �
�� � � � � 
��

�. This yields

L� ����� �
�

�
��� ���

�X
i��


i�yi ��
�xi � �� � (21)

The solution is thus obtained by solving

������� � min
��

max
���

L������ � (22)

Setting the partial first derivatives ofL������ to zero, we obtain the Kuhn–Tucker conditions

�� �

�X
i��


i��xiyi (23)

���y � � � (24)

Substitute (23) and (24) into (21) yields the dual problem

maximize W ��� �

�X
i��


i �
�

�

�X
i��

�X
j��


i
jyiyjx
�
ixj (25)

subject to � � � (26)

��y � � � (27)

This is a standard quadratic programming problem and thus learning a perceptron with the
Support Vector Method arrives at finding the solution vector��. Note, that classification with
such a network requires only the optimal vector�� since by virtue of Equation (23)

h�x���� � sign����x� � sign

�
�X

i��


i��yix
�
ix

�
� (28)

Equation (23) states that the linear classifier is completely described by�� and the training
set. All training pointsxi where
i�� �� � are calledsupport vectors, because they “support”
the construction of the optimal classifier. Note that only a few of the
i�� �� � and it is this
sparseness that makes (28) so appealing. Property (23) will later be exploited for application of
the kernel trick.

Case of not Linearly Separable Data In the last paragraph a learning algorithm for the
case ofRemp���� � � was derived. This restriction is rather severe and can be relaxed by intro-
ducing a slack variable�i for each training point that measures the violation of the constraints
(19) and (20). If we use the approximationRemp��� �

P�
i�� �i we arrive at the problem
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minimize
�

�
k�k� � C

�X
i��

�i (29)

subject to ��xi � ��� �i 
yi � �� (30)

��xi 	 �� � �i 
yi � �� (31)

� � � � (32)

whereC has to be defined before learning and is a parameter that trades the minimization of
k�k� and the “training error”

P�
i�� �i. Using the same technique as in the case of linearly

separable data, we arrive at the dual problem

maximize W ��� �

�X
i��


i �
�

�

�X
i��

�X
j��


i
jyiyjx
�
ixj (33)

subject to � 	 � 	 C� (34)

��y � � � (35)

This is again a quadratic programming problem. The difference from the separable case can
be seen in (26) and (34). If we setC � �, which means that we are not willing to allow any
violation of the constraints (19) and (20), the learning algorithm for the case of not linearly
separable data simplifies to the case of linearly separable data.

The Kernel Trick Until now, we restricted our attention to the case of perceptron learning.
If we want to extend the Support Vector method to nonlinear decision functionsh�x��� we
define — similar to the MLP’s and RBF Networks — mappingsz � f��x��� and apply the
learning technique described in the last paragraph toz. Now taking into account that learning
with the Support Vector method is equivalent to minimization of Equation (33) and classi-
fication can be carried out according to Equation (28), only the inner productsK�x�xi� �
f��x���

�f��xi��� andK�xi�xj� � f��xi���
�f��xj ��� are necessary for the calculations.

Therefore, instead of applyingf� to each vectorx we only need to replace inner productsx�xi
andx�ixj in Equation (33) and (28) by the corresponding functionK�x�xi� andK�xi�xj�.
According to the Hilbert–Schmidt theory (Courant and Hilbert, 1953),each symmetric function
K � Rn �Rn �� R that satisfies the Mercer conditions (Mercer, 1909), corresponds to an inner
product in some spaceF . This is the space, to which the predefined functionf������ maps.
Such functionsK��� �� are calledkernels. In this sense, to extend the Support Vector method
to nonlinear decision functions, kernels need to be found that can easily be calculated and at
the same time map to an appropriate feature spaceF . A list of such kernels is shown in Table
5. The following pseudo–code gives an overview of the Support Vector learning procedure
(Vapnik, 1982; Boser et al., 1992; Cortes and Vapnik, 1995; Sch¨olkopf, 1997; Vapnik, 1998).
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TABLE I. A list of suitable kernel functions for Support Vector Networks (taken from Vapnik, 1995).

Name Kernel function dim�F�

linear K�xi�xj� � x
�

ixj n

polynomial K�xi�xj� � �x�ixj � ���
�
n����

�

�

RBF K�xi�xj� � exp���kxi � xjk
�� �

Two–layer Neural Networks K�xi�xj� � tanh���x
�

ixj � ��� �

Support Vector Network Learning

DefineC (trade-off betweenk��k
� andRemp����)

Define a kernelK � Rn � R
n �� R (see Table 5)

ComputeQ, whereQij � yiyjK�xi�xj�
Solve the QP problem:�� � max



���� �

��
�Q�

�
subject to� 	 � 	 C� and��y � �

Classify newx according toh�x� � sign�
P�

i�� �i��yiK�xi�x��.

In the case of large training sets efficient decomposition algorithms for the QP problem
exist (Osuna et al., 1997a). These algorithms exploit the sparseness of the�� and show fast
convergence on real world datasets (Osuna et al., 1997b; Joachims, 1997).

Selection of kernel parameters When using the kernel trick the parameters� or ���� ���
(see Table 5) have to be determined beforehand. Although there exists no automatic method
to determine the optimal parameter values, the result of Theorem 1 can be used to select the
best parameter values among a finite set of parameter values, e.g., the degree of the polynomial
kernels. Equation (17) gives an upper bound on the VC dimension of the learned classifier.
After training with the Support Vector method we can computeA or k��k� � ����� utilizing
Equation (23) by

k��k
� �

�X
i��

�X
j��

yiyj
i��
j��K�xi�xj� � (36)

Furthermore, as Theorem 1 requires to know the radius of the ball containing all the data, we
can bound this quantity above by the maximum distance of a data point from the center of the
data

D� 	 max
i������ ��

������f��xi����
�

�

�X
j��

f��xj ���

������
�

(37)

which can again be calculated in terms of the inner productsK�xi�xj�, alone. Therefore, in
order to select the best kernel parameter, we fix a parameter, train a Support Vector Network,
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and calculateD� andk��k
�. The optimal kernel parameter is given by that parameter which

minimizes the product of these terms.

6. Support Vector Networks for Preference Learning

In this section we want to show how Neural Networks can be applied to the problem of
preference learning�	 . Let us again start by considering a motivating example.

Example 3 (Preference Learning). Consider an economic agent who is confronted with the
task of choosing a basket of goodsfxigNi�� amongst different alternatives. Think ofxi as a
vector which denotes either numbers of different goods or different levels of relevant features
of a certain good. The agent’s task amounts to deciding whether he prefers anxi to another one,
i.e., he will have to order the bundles according to hispreference. From a limited number of
purchases the agent will try to infer his preferences for other baskets (i.e. for future purchases).
Thus the agent has to learn his preferences as expressed in an assignment ofutilities to feature
vectorsxi from a limited sample. Although he may not be able to assign scores to each vector
he will be able to rank the baskets (ordinal levels).

To illustrate what we callpreference learning we denote byY the output space. Then a
particular application is given by the problem of learning the ordinal utilityyi the agent assigns
to a combination of goods described by the feature vectorxi. The problem is no longer a mere
classification problem since the ordering of the utilities has to be taken into account by the
learning process. The learned function should betransitive andasymmetric.

6.1. THEORETICAL BACKGROUND

The preference learning problem The most important problem in solving preference learning
problems is the definition of an appropriate loss for each decisionf�x��� whereas the true or-
dinal utility is given byy. Since they’s are ordinal, no knowledge is given about the difference
y�f�x���. On the other hand, the loss given in Equation (1) weights each incorrect assignment
f�x��� by the same amount and thus is inappropriate as well. This leads to the problem, that
no risk can be formulated which shall be minimized by a Neural Network learning algorithm.

Reformulation of the problem To overcome this drawback we now consider all pairs
�x

���
i �x

���
i � of objects (e.g. combination of goods), wherei denotes theith possible permuta-

tion. If in the training setx���i has higher ordinal utility thanx���i , we say thatx���i is preferred

(by the customer) overx���i and denote this by the classzi � ��. In turn, if the ordinal utility

of x���i is higher thanx���i ’s utility, we denote this byzi � ��. We can now formulate a
criterion for the optimal decision function. The optimal decision function is given by the��
that minimizes the probability of misclassifying pairs of objects. Therefore, if we consider

�� See also the work by Tangian and Gruber (1995), Herbrich et al. (1998) or Wong et al. (1988).
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decision functions on pairs of objects, we arrive at a “usual” classification problem, this time
on pairs of objects.

A latent utility model To derive an Neural Network algorithm we make the assumption,
that there is an unknown cardinal utilityU�x� an objectx provides to the customer. Moreover
we assume, that ifx��� is preferred overx��� thenU�x���� � U�x����, and vice versa. The
advantage of such a model is the fact, thattransitivity and asymmetry are fulfilled for each
decision function. In terms of Statistical Learning Theory this means, that our hypothesis space
is maximally reduced — we only want to learn decision functions with these properties. Since
we are interested in cardinal utility functions that classify all pairs of objects correctly they
have to fulfill

U�x
���
i � � U�x

���
i � � U�x

���
i �� U�x

���
i � � � 
zi � �� (38)

U�x
���
i � � U�x

���
i � � U�x

���
i �� U�x

���
i � � � 
zi � �� � (39)

A linear model of the latent utility Let us start by making a linear modelU�x��� � ��x

of the latent utility. The last two equations become

��x
���
i ���x

���
i � ���x

���
i � x

���
i � � � 
zi � �� (40)

��x
���
i ���x

���
i � ���x

���
i � x

���
i � � � 
zi � �� � (41)

According to the idea of Support Vector learning we make these constraints stronger (see
Equations (19) and (20)) wherex���i � x

���
i now serves as a description of the pair of objects

�x
���
i �x

���
i �. In accordance with the Support Vector algorithm for classification, in order to

minimize the generalization error on the pairs of objects we have to minimizek�k�. This leads
to the same algorithm as described in Section 5, this time applied to the difference vectors
x
���
i � x

���
i .

A nonlinear model of the latent utility Since a linear model of the latent utility is often
too restrictive, we want to extend the approach to nonlinear utility functionsU�x�. This can
be achieved by considering a mappingf��x��� which has to be defined beforehand. Then the
constraints of the optimal classifiers on pairs of objects become

���f��x
���
i ���� f��x

���
i ���� � �� 
zi � �� (42)

���f��x
���
i ���� f��x

���
i ���� 	 �� 
zi � �� � (43)

In order to learn using the Support Vector method, we have to compute the matrixQ where the
element in thei-th row andj-th column is given by

Qij � zizj�f��x
���
i ���� f��x

���
i ������f��x

���
j ���� f��x

���
j ���� (44)

� zizj

�
f��x

���
i ����f��x

���
j ���� f��x

���
i ����f��x

���
j ����

f��x
���
i ����f��x

���
j ��� � f��x

���
i ����f��x

���
j ���

�
� (45)
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The advantage of this decomposition is the applicability of the kernel trick (see Section 5).
Instead of definingf��x��� we replace all inner products by a functionK (see Table 5) that can
easily be calculated and thus learn an optimal latent nonlinear utility function. The following
pseudo–code gives an overview of the learning procedure for preference relations.

Learning Preference Relations with Support Vector Networks

DefineC (trade-off betweenk��k
� andRemp����)

Define a kernelK � Rn � R
n �� R (see Table 5)

ComputeQ, where

Qij � zizj

�
K�x

���
i �x

���
j ��K�x

���
i �x

���
j ��

K�x
���
i �x

���
j � �K�x

���
i �x

���
j �
�

Solve the QP problem:�� � max


���� �

��
�Q�

�
subject to� 	 � 	 C� and��y � �

Compute the latent utility of unseenx according to
U�x� �

P�
i�� �i��yi�K�x

���
i �x��K�x

���
i �x��.

6.2. AN ECONOMIC APPLICATION

Let us illustrate the above discussion by an example. Consider a situation where two goods
compete, i.e.x � �x�� x�� is a vector that describes a basket of two goods. Assume an agent
who has purchased a limited number of combinations. The agent will order these combinations
according to his preferences and assign a utility level to these combinations such as to achieve
the highest possible utility with the next purchase.

To simulate this situation we generated a limited number of combinations and classified
them according to an underlying true latent utility function

U�x� �
x�x�
�

� (46)

such as to implement the agent’s preference structure. Note that this utility function is ordinal
in the sense that any homogenous transformation of this function would not affect the resulting
order of combinations. Note also that the only given information is the set of ordered objects,
i.e., we do not refer to a cardinal utility scale. Then the process of learning the utility function is
simulated with a Support Vector Network that represents metaphorically the learning capacity
of the agent. We assume the agent to be bounded rational, i.e., his classification procedure is
not restricted to a certain type of utility function. We therefore start with a polynomial of degree
5 that is able to locally approximate any continuous function. Figure 6.2 shows the results for
a training set of 5 goods (a) and 10 goods (b).

The dashed lines represent the learned utility function. The model selection strategy that
is based on equations (36) and (37), selects an ordinal utility function of polynomial degree
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Figure 3. Learning of a preference structure of combinations of goods. The learned latent utility (dashed lines)
is superimposed on the predefined (true) latent utility (solid lines). Training set consists(a) of five and(b) of ten
observations.

� � � out of polynomial degrees� � �� � � � � 
. This choice exactly corresponds to the model
from which the true utility function (46) was chosen. Note that all combinations are classified
correctly and how close the learned latent utility is to the unknown true latent utility.

7. Summary

After introducing some basic results from statistical learning theory, we gave an overview of
the basic principles of neural network learning. We presented three commonly used learning
algorithms: Perceptron learning, backpropagation learning, and radial basis function learning.
Then we gave an overview of existing economic applications of neural networks, where we
distinguished between three types: Classification of economic agents, time series prediction and
the modelling of bounded rational agents. While according to the literature Neural Networks
operated well and often better than traditional linear methods when applied to classification
tasks, their performance in time series prediction was often reported to be just as good as tra-
ditional methods. Finally, choosing Neural Networks as models for bounded rational artificial
adaptive agents appears to be a viable strategy, although there exist alternatives.

In Section 5 we presented a new learning method, so called Support Vector Learning, which
is based on Statistical Learning Theory, shows good generalization and is easily extended to
nonlinear decision functions. Finally, this alorithm was used to model a situation where a buyer
learns his preferences from a limited set of goods and orders them according to an ordinal
utility scale. The agent is bounded rational in that he has no previous knowledge about the
form of the utility function. The working of the algorithm was demonstrated on a toy example,
that illustrated the good generalization behavior and the model selection performed by the
algorithm.
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