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Introduction

Notation

Here are a number of symbols that are used throughout the text� together with their
meaning� Other symbols will be de�ned locally� and are thus not detailed here�

x Input of the system and model�

y Output of the system�

by Estimator of the output of the system�

f System mapping from input to output� y � f �x��

fw Parametric model mapping from input to output� by � fw �x��

w Vector of parameters�

bw Estimator of the vector of the parameters�

ew Optimal vector of parameter�

e �y� by� Local error associated with the estimation of y by by�
x�k� Sample input�

y�k� Observed sample output�

D Data set �
�
x�k�� y�k�

�
�

��k� Error on the sample output� y�k� � f
�
x�k�

�
� ��k��

p �x� Probability density of the input x�

bp �x� Estimated density of the input x�

� ��� Dirac function�

iii



iv Introduction

H ��� Heavyside function�

Ev ��� Expectation over variable v�

S �w� Empirical risk� or training error�

G �w� Expected risk� or generalisation error�

C �w� Cost function� usually the regularised empirical risk�

N Number of examples �sample size��

P Number of parameters�

rvf Gradient of function f with respect to variable v� When the gradient is com�
puted with respect to the argument of the function� the subscript may not be
mentioned� i�e� rf �x� � rxf �x��

Hf Hessian matrix of multidimensional function f �

cte denotes a constant term with no relevance to the rest of the equation�

R �f� Regularisation functional�

R �w� Regularisation functional for a parametric model� where w is the set of pa�
rameters�

� Regularisation coe�cient�

card �E� Number of elements in set E �Sometimes written as � �E� in the american
literature��

P �A� Probability of A �in a probability space��

Content

This thesis is relevant to the study of neural networks models� This research has
traditionally been linked to computer science and arti�cial intelligence� In the last
few years however� two distinct lines of thoughts seem to diverge� the �rst one stays
close to the biological origins of the term�we will call it �neuro�biological�	 the
second considers neural networks as a model� and studies them from a statistical
point of view�

Our work concerns the second of these lines� Furthermore� we try to stay independent
of any speci�c application� and keep a general approach to neural networks� We
attempt to exhibit the links between neural networks and statistics� and show that
neural computation can be naturally placed in the realm of traditional statistics�
We thus compare neural networks to other models� linear regression as well as non�
parametric estimators� We also consider some of the numerous learning techniques
developed for neural models� and try to compare them� from both a theoretical and
applied point of view�
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This thesis is organised along these ideas� The authors contributions are integrated
to this presentation and duly signaled� but we refrained from using a state�of�the�art
� contribution dichotomy�

As a general guideline� let us just say that chapters � and � �as well as appendix B
are more pedagogical� and original contributions are limited apart from a few minor
corrections� and the implementation of the non�parametric tool�box� In chapters �
and �� the original content is higher as we present some original pieces of analysis�

Chapters � and � present some entirely original work� The �rst one presents an
application of the techniques presented in chapters � to � to a usefull problem�
�nding the relevant delays to include in a time�series modelling problem The second
presents our work on the so�called �pruning prior�� �rst on a toy problem where we
present its joint regularisation and pruning abilities� then on more di�cult tasks�
time�series modelling and system identi�cation�

We have been concerned into giving a balanced and thorough presentation has been
a main concern� It sometimes require to go back to the basics� Furthermore� this
work is relevant to several quite di�erent domains� Concepts that are obvious for a
statistician might not be so for a connectionist� and the reverse is also true�

Summary

This thesis deals with the problem of statistical learning� By �learning�� we mean a
process by which we obtain a model of a phenomenon using data measured on it� We
focus on system identi�cation and time series modelling� and our work is naturally
slightly in�uenced by this concern� We will for example evoke only regression estima�
tion� and no classi�cation problem� Most theoretical and practical aspects presented
herein can easily be adapted however�

Let us proceed with a detailed presentation of the document� Chapter � presents
the basic regression problem� We present the concepts of training and generalisa�
tion error and the maximum likelihood method� We evoke linear models as well as
non�linear models� Neural�networks are presented as a particular class of non�linear
models� and we present a number of optimisation technique used for training these
models� We conclude by deriving the bias�variance decomposition for least�squares
regression and show the limits of simple regression�

Chapter � is dedicated to regularisation� It gives a fast general presentation of ill�
posed problems and gives the idea of regularisation to solve these� After presenting
a typical case of ill�posedness� we introduce a number of well�known and less well�
known regularisation techniques� We mention in particular an original regularisation
technique that will be used in later chapters� We recall the link between regularisa�
tion and noise injection and data normalisation� and study carefully the relationship
between stopped�training and regularisation with a ridge term�

Chapter � will focus on generalisation and its use in the tuning of regularisation
hyper�parameters� Two main classes of methods are presented� The validation meth�
ods� including split�sample� cross�validation and leave�one�out� and the algebraic
estimates of generalisation error� We insist on the links between these methods and
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show that most of them are asymptotically equivalent� We also compare them from
a computational point of view�

Chapter � puts the content of the �rst chapters into practice� We show how it
is possible to use generalisation error to extract relevant input information in a
time�series modelling problem� In particular� we use non�parametric regression and
regularised neural networks to perform some of the modelling�

In chapter �� we present an attractive alternative to the above� the Bayesian methods�
The evidence and the MAP methods are presented� analysed and compared�

Chapter � is of a more applied nature� It is dedicated to the study of a regulariser
that provides automatic pruning of unnecessary weights� It is exempli�ed with the
study of a small problem� the parameter location problem� We present a thorough
analyse of a number of solution� spanning an array of techniques from Bayesian
analysis to the generalisation�oriented solutions� A comparison is made with the
weight�decay method� We also provide some analysis on more complicated problems
of time�series modelling and system identi�cation�

Each chapter closes with a section dedicated to comments� The bibliographical ref�
erences have been included in this section� rather than scattered in the text�

This thesis ends with a number of appendices� Some of them insist on aspects that
are not treated in the main part� others contain papers written in the course of this
Ph�D� They address points that are evoked in the text� and can serve as reference�

But poursuivi et contribution

Traditionnellement� le domaine du connexionnisme� est plut�ot rattach
e �a linforma�
tique� et g
en
eralement �a lintelligence arti�cielle� Au cours des derni�eres ann
ees� il
semble que deux courants se d
egagent� lun dinspiration neuro�biologique� toujours
rattach
e �a lethymologie m�eme du terme r�eseaux de neurones 	 lautre plus th
eorique�
se d
egage des fondations biologiques pour sint
eresser au mod�ele et l
etudier dun
point de vue statistique�

Cest dans ce dernier cadre que se situent nos travaux� Il nous a sembl
e important non
pas d
etudier une application particuli�ere et restrictive� mais de d
evelopper une ap�
proche plus g
en
erale du domaine� Nous nous sommes e�orc
es de mettre en 
evidence
des liens entre connexionnisme et statistiques� et de montrer que les m
ethodes con�
nexionnistes trouvent naturellement leur place dans le bestiaire statistique tradition�
nel� Ainsi� nous avons 
etudi
e les r
eseaux de neurones en les comparant �a dautres
techniques � r
egression lin
eaire bien s�ur� mais aussi estimateurs non�param
etriques�
En�n� nous nous sommes int
eress
es �a certaines des d
ej�a nombreuses techniques
dapprentissages appliqu
ees aux mod�eles connexionnistes� montrer leurs points com�
muns lorsque cela est possible� et les comparer sur des cas appliqu
es�

Lorganisation de ce document re�ette donc ces pr
eoccupations plut�ot quune pr
e�
sentation lin
eaire des travaux de lauteur� Les contributions originales sont r
eparties
au �l des chapitres� et signal
ees comme telles�

Bri�evement� nous pouvons dire que dans les parties didactiques que sont les cha�
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pitres � et � �ainsi que lannexe B�� ces contributions sont plut�ot faibles� mis �a
part quelques corrections mineures et la partie impl
ementation des algorithmes non�
param
etriques� Les chapitres � et � contiennent une part plus importante de con�
tributions originales� notamment en ce qui concerne lanalyse et la comparaison des

el
ements pr
esent
es�

En�n� les chapitres � et �� sont pratiquement enti�erement originaux� Le premier
pr
esente une application originale des techniques introduites dans les trois pre�
miers chapitres� Il sagit dextraire dune s
erie temporelle les d
elais n
ecessaires �a la
mod
elisation de cette s
erie par un mod�ele donn
e� Le second pr
esente nos travaux re�
latifs �a une fonctionnelle de r
egularisation particuli�ere� tout dabord sur un probl�eme
tr�es simple� puis sur des probl�emes plus appliqu
es en mod
elisation de s
eries tem�
porelles et identi�cation de syst�emes�

Description d�etaill�ee

On sint
eresse ici au probl�eme de lapprentissage statistique� On entend par ap�
prentissage lobtention �a partir de donn
ees issues dun ph
enom�ene� dun mod�ele
de celui�ci� Les domaines qui nous int
eressent plus particuli�erement sont ceux de
lidenti�cation de syst�emes et de la mod
elisation de s
eries temporelles� lensemble
des travaux pr
esent
es ici rel�event de cette direction de recherche privil
egi
ee� Par
exemple� on ne sint
eresse quaux probl�emes destimation de la regression� et pas �a
la classi�cation� Cependant� la plupart des m
ethodes et d
eveloppements th
eoriques
pr
esent
es ont une application plus large�

Dans le chapitre �� on pr
esente rapidement certains aspects concernant la r
egression
non r
egularis
ee� la m
ethode du maximum de vraissemblance� dans le cas lin
eaire
puis dans le cas non�lin
eaire� Plusieurs techniques doptimisation sont pr
esent
ees
pour e�ectuer un apprentissage non�lin
eaire� On conclut le chapitre en 
evoquant
les probl�emes pos
es par lutilisation de la r
egression simple� ce qui nous permet
dencha��ner sur le chapitre suivant�

Au chapitre �� on d
e�nit les notions de probl�emes correctement et incorrectement
pos
es� On introduit la r
egularisation� et lon 
etudie la convergence des solutions
r
egularis
ees� Le lien est e�ectu
e avec les mod�eles connexionnistes� pour lesquels on
pr
esente un certain nombre de techniques de r
egularisation usuelles et moins usuelles�
On 
etudie en particulier les liens entre r
egularisation et injection de bruit� normali�
sation et apprentissage interrompu �stopped training��

Le chapitre � 
etudie le probl�eme des hyper�param�etres et de leur d
etermination�
Plusieurs m
ethodes sont pr
esent
ees pour permettre destimer lerreur de g
en
erali�
sation et permettre doptimiser la valeur des hyper�param�etres � validation simple�
validation crois
ee� et validation crois
ee �leave�one�out�� puis une s
erie destimateurs
alg
ebriques� On sint
eresse alors plus particuli�erement aux liens entre ces di�
erentes
m
ethode� et lon montre quelles sont pour la plupart 
equivalentes� Une comparaison
est e�ectu
ee� �a la fois sur le plan de la charge de calcul requise et sur le plan des
r
esultats obtenus�

Le chapitre � pr
esente les m
ethodes dapprentissage Bay
esien� Deux techniques sont
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pr
esent
ees� analys
ees� et compar
ees � l
evidence tout dabord� puis la m
ethode MAP�

Le chapitre � est plus appliqu
e� Il est d
edi
e �a l
etude dune fonctionnelle de r
egu�
larisation qui permet de�ectuer de mani�ere automatique l
elagage des poids� On

etudie tout dabord plusieurs techniques dapprentissage sur une probl�eme simple�
Ceci permet de mener �a bien la plupart des calculs de mani�ere exacte et m�ene �a des
analyses int
eressantes� On insiste plus particuli�erement sur la comparaison de notre
fonctionnelle de r
egularisation avec le �weight�decay� traditionnellement utilis
e en
connexionnisme� On pr
esente ensuite des r
esultats qui illustrent le fonctionnement de
cette fonctionnelle sur deux types de probl�emes � mod
elisation de s
eries temporelles
et identi�cation de syst�emes�

Au cours de cette pr
esentation� nous 
etudions une classe de mod�eles non�lin
eaires
particuliers � les r
eseaux de neurones� aussi appel
es r
eseaux �ou mod�eles� connexion�
nistes� Il ny a pas de chapitre consacr
e sp
eci�quement �a ces mod�eles� dans la mesure
ou la majorit
e des m
ethodes pr
esent
ees ici sappliquent �a des classes de mod�eles plus
larges�

Ce manuscrit se termine par quelques annexes� En particulier� lannexe B pr
esente
de mani�ere d
etaill
ee les techniques de r
egression non�param
etrique que lon utilise �a
de nombreuses reprises� dans les chapitres � et ��

Dans chaque chapitre� les sujets abord
es ont 
et
e r
epartis par section� Plut�ot que
dindiquer les r
ef
erences en appart
e au cours du texte� il a 
et
e pr
ef
er
e une organisa�
tion di�
erente� Le corps du chapitre est cens
e �etre auto�su�sant� et de nombreuses
r
ef
erences sont indiqu
ees� section par section� �a la �n de chaque chapitre�
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�

Parametric regression

��� Learning problem

Let us present brie�y the learning problem we will address in this chapter and the
following� The ultimate goal is the modelling of a mapping f � x ��� y from multi�
dimensional input x to output y� The output can be multi�dimensional� but we will
mostly address situations where it is a one dimensional real value�

Furthermore� we should take into account the fact that we scarcely ever observe the
actual true mapping y � f �x�� This is due to perturbations such as e�g� observational
noise� We will rather have a joint probability p �x� y�� We expect this probability to
be peaked for values of x and y corresponding to the mapping�

We focus on automatic learning by example� A set D �
�
x�i�� y�i�

�
i�����N

of data

sampled from the joint distribution p �x� y� � p �yjx� p �x� is collected� With the
help of this set� we try to identify a model of the data� parameterised by a set of
parameters w� fw � x ��� by�by is the estimator of y provided by the model� In the framework of this chapter� it is
provided by a speci�c model fbw� bw in turn is an estimator of ew� the set of parameters
for which the model is the closest to the original mapping� or system� f �

��� Learning and optimisation

The �t of the model to the system in a given point x is measured using a criterion
representing the distance from the model prediction by to the system� e �y� fw �x���
This is the local risk � The performance of the model is measured by the expected

risk �

G �w� � Ex�y �e �y� fw �x��� �

Z Z
e �y� fw �x�� p �yjx� p �x� dxdy �����

This quantity represents the ability to yield good performance for all the possible
situations �i�e� �x� y� pairs� and is thus called generalisation error � The optimal set

�



� Parametric regression

of parameters minimises the generalisation error�

ew � argmin
w

G �w� �����

It is clear that no calculation� let alone optimisation� of the generalisation error is
possible �except for degenerate cases�� For a �nite sample however� the data set
provides an estimator of G �w�� the empirical risk �

S�w� � bEx�y �e �y� fw �x��� �
�

N

NX
i��

e
�
y�i�� fw

�
x�i�

��
�����

This corresponds to estimating the joint probability by the empirical density ��bp �y� x� � �
N

PN
i�� �

�
x� x�i�

�
�
�
y � y�i�

�
� where ���� is the Dirac function� Min�

imising ����� is referred to as training the model� The data set D and the empirical
risk S �w� are the training set and training error � respectively�

According to the law of great numbers� S �w� converges towards G �w� when N
grows� However� this is not true for their minima� argmin

w
S �w� does not converge

towards ew�
��� Maximum likelihood

The maximum likelihood method allows us to link the risk function e ��� and the
assumption on the noise� Let us assume that the observed output y�i� is the actual

system output f
�
x�i�

�
corrupted by additive� independent Gaussian noise� y�i� �

fw
�
x�i�

�
��� The Gaussian assumption originates from practical considerations and

is a �safe bet� in most situations� The probability that a given example
�
x�i�� y�i�

�
was sampled from a system modelled by fw is�

P
�
y�i�jw� x�i�

�
�

�p
����

exp

�B��
���y�i� � fw

�
x�i�

�����
���

�CA �����

Remember here that y is one�dimensional� so �� is the scalar variance rather than
a covariance matrix� As the noise is assumed independent� we obtain the likelihood
of the data set D�

P �Djw� �
NY
i��

P
�
y�i�jw� x�i�

�
�
�
����

��N
� exp

�BBBBB��
NX
i��

���y�i� � fw
�
x�i�

�����
���

�CCCCCA �����

The most likely solution is the one for which ����� is the highest� i�e� the maximum

likelihood solution� bw � argmaxw P �Djw�� Let us now take e ��� �� � k� � �k�� the
Euclidean norm� which corresponds to the least squares approach�

P �Djw� �
�
����

��N
� exp

�
� N

���
S�w�

�
�����

�This topic will be explored further in section ����
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Noisy output �

In other words� S �w� � � lnP �Djw�� so the least square and the maximum likeli�
hood solution coincide� The least square solution is here a special case of expected
risk minimisation� Equation ����� links the design of the local risk criterion and the
assumption on the noise�

��� Noisy output

We have shown the link between the assumed output noise distribution and the error
function� Let us now analyse the in�uence of this noise on the generalisation perfor�
mance� Let us assume again that the system is corrupted by additive� independent
noise� with  average and �� variance� y � f �x� � �� We have p �yjx� � p ��� so for
a squared error�

G�w� �

Z
x

Z
�
�f �x� � �� fw �x��� p�x�p��� d� dx �����

We now recall that
R
p ��� d� � ��

R
�p ��� d� �  � mean�� and

R
��p ��� d� � ���

After some algebra� we derive the �nal result�

G�w� � �� �

Z
x
�f �x�� fw �x��� p�x� dx �����

The di�erence in generalisation error between the noisy case and the noise�free case
is an additive constant� This gives the following insights�

� The noise level is a lower bound on generalisation error�

� The generalisation error of a perfect model is the variance of the output noise�

� Output noise can be neglected as far as generalisation error is concerned� This
is of course not the case with training error �cf� section ��� ��

��� Linear regression

We will here handle the particular case where the model is linear�

fw�x� � x��w �����

where � is the transpose operator� We also assume that the system is linear� cor�
rupted by additive Gaussian noise� independent of the output� We sample a number

N of input�output pairs as � y�i� � x�i�
� ew � ��i�� We wish to estimate the ideal setew�

Let us denote by X� Y and E the N � P � N � � and N � � matrices �respectively�
containing the transposed input� output and noise vectors�

X �

�					

x���

�

x���
�

���

x�N�
�

������ Y �

�				

y���

y���

���

y�N�

����� E �

�				

����

����

���

��N�

����� ���� �
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� Parametric regression

The mean squared training error is expressed simply as�

S�w� �
�

N
kX�w �Yk� ������

The linear maximum likelihood estimator is obtained by minimising ������� As
rS �w� � �

NX
� �Xw �Y�� we obtain the well�known expression of the linear re�

gression solution� bw �
�
X�X

���
X�Y �������

X�X
���

X� is the pseudo�inverse of matrix X�

��	 Algebraic estimators of errors for linear regression

This section gives insight into assessing the quality of the solution� once we obtain it
with ������� It also is crucial as it gives the idea of the framework behind obtaining
algebraic estimates of generalisation� as presented in chapter ��

In general� bw and ew will be di�erent� As Y � X� ew � E� the linear estimator

satis�es bw � ew �
�
X�X

���
X�E� This leads to the expression of the training and

generalisation errors�

S � bw� �
�

N

�
E�E�E�X

�
X�X

���
X�E

�
������

G � bw� � �� �

Z
x

�
x�
�
X�X

���
X�EE�X

�
X�X

���
x

�
p�x� dx ������

In order to get rid of the �uctuations introduced by the use of a particular sample as
a training set� we will average ������ and ������ over all possible training sets D of
size N � This means averaging over the input sample� and over the noise sample� with
h�iD � hh�i�ix � hh�ixi�� In order to perform the calculations� recall that hEE�i� �
��IN and for a square matrix M� hE�MEi� � ��tr �M�� Furthermore� we note mkl

the elements of
�
X�X

���
�

tr

�
X
�
X�X

���
X�

�
�

NX
i��

PX
k��

PX
l��

x
�i�
k x

�i�
l mkl � P ������

This arises from the de�nition of the mkl� and leads to the average training error�

hSiD � ��
�
�� P

N

�
������

For the generalisation error� let us denote by HS and HG the Hessian matrices of
the training and generalisation errors �respectively��

hGiD � ��
�
� �

Z
x
x�
��
X�X

����
x
x p�x� dx

�
� ��

��� �
tr
�
HG

D
H��

S

E
x

�
N

�A
������
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Non�linear regression �

By de�nition of the generalisation error� hHSix � HG� This equivalence translates

to the inverse� to a �rst order approximation�
D
HS

��
E
x
� HG

���O
�
P��
N

�
� leading

to the Final Prediction Error or FPE �

hGiD � ��
�
� �

P

N

�
�
N � P

N � P
hSiD ������

This result calls for some clari�cation� Consider that each parameter is a degree
of freedom� The theoretically optimal error is the noise variance ��� However� as
the training set is �nite� each of these parameters will tend to over��t the data�
leading to a downward bias of size ���N in the training error� By reaction� the
generalisation performance worsens� producing an upward bias of similar amplitude
in the generalisation error�

��� Non�linear regression

Let us now switch to the more general case of a non�linear model fw� Using the
squared error� the empirical risk is expressed as�

S �w� �
�

N

NX
i��

�
y�i� � fw

�
x�i�

���
������

Unlike the linear case above� there is no analytical solution for the minimisation
of ������� Finding bw is just a standard optimisation problem� i�e� a non�linear re�

gression� We wish to either minimise S �w� or �nd rS �w� �  � The gradient of the
training cost ������ is�

rS �w� �
�

N

NX
i��

Jfw �w�
�
y�i� � fw

�
x�i�

��
���� �

For a M �dimensional function fw� Jfw is the M � P Jacobian matrix calculated in
w� For a one�dimensional model� Jfw � rfw �w��

In the next section� we brie�y present neural network models� a class of non�linear
models for which the �rst order information is easily computed�

��� Neural Networks

Generally speaking� a neural networks is a set of inter�connected cells� called neurons�
performing a simple non�linear transformation of their weighted inputs� They also
go by the name of arti�cial neural networks or connectionist models�

We will here only consider a subset of neural networks� the multi�layer perceptrons
�MLP�� It can be represented by a number of ordered layers with forward connections
between them� The estimation is straightforward as there are no backwards �i�e�
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� Parametric regression
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y�x� �
PH

j��Wjhj �W�

Figure ���� Multi�layer perceptrons with one hidden layer� The square cells are
biases� the round cells have either linear �input and output layers� or sigmo	
d
�hidden layer� transfer functions�

recurrent� connections� A MLP with n inputs� one hidden layer containing H units
and one output is represented in �gure ���� It implements the mapping�

fw �x� �
HX
j��

Wjh

�
nX
i��

wjixi � wj�

�
�W� ������

The transfer function h in the input layer is usually a non�linear� increasing� bounded
function such as the hyperbolic tangent �tanh�� the error function �erf� or the simple
sigmo$�d �

��e�x � For regression problems� the output cell is kept linear� while for
classi�cation it is customary to take a non�linear bounded function again�

All weights wji and Wj are gathered in weight vector w containing the P � �n �
��H � � parameters� The choice of the number of input and output units is guided
by the problem� In time series modelling for example� we will have one output �the
forecast� and as many inputs as past values we involve in the prediction� On the other
hand� the number of hidden units is problem dependent� and a central preoccupation
in neural computation� It is linked with the model capacity as shown in chapters �
and ��

Neural Networks are interesting for several reasons�

� They provide a convenient generic non�linear model�

� They can approximate any reasonable function arbitrarily closely�

� They are rather simple to implement�

� Back�propagation allows for a convenient estimation of bw through standard
optimisation methods�
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Back�Propagation �

��� Back�Propagation

The back�propagation rule is the application of the chain rule of derivation to the
MLP� We present the derivation for a one output� one�hidden layer case� but the
generalisation is straightforward�

The local quadratic cost for example k is Sk �w� �
�
y�i� � y

�
x�k�

���
� For ease of

calculation� we introduce the output hj of hidden unit j� and its input pj � h�� �hj��
The derivative of the cost with respect to the input of the hidden layer and the input
layer are�

�Sk
�pj

�
�hj
�pj

�y

�hj

�Sk
�y

� �h� �pj�Wj

�
y�k� � y

�
x�k�

��
������

�Sk
�xi

�
HX
j��

�pj
�xi

�Sk
�pj

�
HX
j��

wji
�Sk
�pj

������

The derivatives with respect to the parameters are�

�Sk
�Wj

�
�y

�Wj

�Sk
�y

� �hj
�
y�k� � y

�
x�k�

��
������

�Sk
�wji

�
�pj
�wji

�Sk
�pj

� xi
�Sk
�pj

������

The calculation of the neural network estimation is done by a forward pass� giving
hj and y �x� given the xi� wji and Wj � The calculation of the derivatives of the cost
with respect to the parameters is done by back�propagation� using ������ and �������
then ������ and �������

The �rst derivatives with respect to the parameters allow the use of �rst order
optimisation method to minimise S �w� �and even some approximations of second
order methods�� The �rst derivatives with respect to the inputs allow the use of a
neural network as a part in a modular system�

��� Quadratic approximation

For one�dimensional optimisation� the basic techniques are e�g� golden search or
parabolic interpolation� These are not directly relevant to numerical learning� though
they are crucial when performing a line search� i�e� minimisation along a given
search direction� The methods presented below are relevant to the minimisation of
a function of P parameter� i�e� in a P �dimensional space�

Given a cost function C �w�� let us consider the quadratic expansion around bw�
C �w� � C � bw� � �

�
�w � bw��H �w � bw� ������

H is the Hessian matrix of the cost function� This expression relates to the use of a
quadratic cost� It is exact for linear models� approximate for others� However� just
as the parabolic interpolation allows to minimise one�dimensional functions that are
not necessarily parabolas� we expect the quadratic approximation to yield acceptable
results in a fairly broad context�
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� Parametric regression

���� Steepest descent

The idea of steepest descent is to search at every iteration along the direction of
steepest descent� i�e� the gradient�

wt�� � wt � 	trC �wt� ������

	t is a gain parameter that can be set in several ways� Consider for example�

� setting 	t to a constant parameter�

� �nding the �optimal� rate b	t � argmin� C �wt � 	rC �wt���

The rate of convergence of an algorithm is de�ned as the speed at which it gets
closer to the solution� i�e� the ration between the distance to the solution at time t
and the distance to the solution at time t� �� For the steepest descent algorithm� it
will later give some insight into the ine�ciency of this scheme�

Proposition ��� Consider a quadratic error function with constant Hessian H of

condition number c� The rate of convergence of wt towards the minimum bw using

the Steepest Descent algorithm is given by�

C �wt�� C � bw�
C �w��� C � bw� �

�
c� �

c� �

��t
������

The condition number c of a matrix is the ratio of its largest eigenvalue and its
smallest one� The Hessian H is usually rather ill�conditioned� i�e� has a large condi�
tion number� so that the ratio in ������ is close to one� Physically� the cost surface
has a very narrow valley around bw� so the algorithm jumps from one side to the
other of the valley in very short orthogonal steps�

Several heuristic improvements of this schemes have been made to counter this e�ect�
such the addition of a momentum term� However� rather than customising a poor
learning technique� we advocate the use of a more decent optimisation technique�

���� Stochastic gradient descent

The stochastic version of the gradient descent algorithm� also called on�line gradient
descent� can lead to drastic improvement in convergence when it is properly used�

The stochastic algorithm consists in updating the parameters on the basis of the
gradient of the local cost�

wt�� � wt � 	t��rCk �w� ������

where Ck is the local cost for pattern k� i�e�
���y�k� � fwt

�
x�k�

������ The choice of the

pattern k to use in step t is done in a stochastic manner� taking the training examples
at random� This scheme is thus well�suited to on�line adaptation of the weights� On
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Conjugate gradient �

the other hand� the previous algorithm uses the computation of the gradient on the
entire training set� making it better suited for o��line training�

A particularly sensitive issue in the stochastic design is the setting of the learning
rate as the optimisation proceeds� The following proposition addresses this issue�

Proposition ��� For a cost function with mild regularity conditions �satis�ed by

the quadratic cost�	 the stochastic gradient descent algorithm �
���� converges when

the sequence of positive gains 	t satis�es�

��X
t��

	t �� and
��X
t��

	�t 
 �� ���� �

The mild regularity conditions mentioned in proposition ��� are the fact that the
global cost has a number of �bounded� derivatives� and a couple of conditions on
the derivative of the local cost�

The stochastic gradient descent proves very e�cient when used in a suitable manner�
especially when the 	t are set in a proper way� Unfortunately� this algorithm is
commonly misused in the neural network literature� because it is often presented
as an ad hoc procedure with no reference to the stochastic optimisation literature�
It is for example common to �nd a constant setting for 	t� in contradiction with
condition ���� ��

Finally� let us mention that stochastic gradient descent is recommended for problems
such as large scale classi�cation� where the training set is large� and often redundant�
It is generally less well suited to small scale problems and regression estimation� In
such cases� the conjugate gradient algorithm presented below usually yields better
performance�

���� Conjugate gradient

The conjugate gradient method increases the e�ciency of the optimisation by avoid�
ing the oscillation of the steepest descent method in ill�conditioned cases�

Let us �rst recall that two vectors u and v are said conjugate with respect to matrix
A if u�Av � v�Au �  � i�e� they are orthogonal in the sense of the quadratic form
A�

As we have noticed earlier� the quadratic approximation ������ involves the Hessian
matrix of the cost function� Furthermore� it would be convenient that once a min�
imisation step is completed� the next search direction does not interfere with the
previous one �in order not to undo what has just been done� i�e� is restricted to the
conjugate hyper�plane� which means that the old and the new search direction are
kept conjugate with respect to the Hessian H�

We will then construct a set ht of successive conjugate search directions together
with a set gt of gradient directions� If wt is the approximation of the location of the
minimum of C�w� at step t� we have�

gt�� � rC �wt� � H �wt � bw� ������
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� Parametric regression

The new search direction will be taken as a combination of the gradient direction
and the previous search direction��

ht�� � gt�� � �t��ht ������

where �t�� is a scalar� Let us now recall that the hi are a conjugate family of
vectors� i�e� in particular ht��

�Hht � ht���Hht �  � This property is used together
with ������ at step t� � and t to obtain�

 � gt��
�Hht � �t��ht

�Hht
ht
�Hht � gt

�Hht

leading to the value of �t���

�t�� �
gt��

�Hht
gt�Hht

������

This expression is still unsatisfactory as it involves the Hessian matrix� the calcula�
tion of which we seek to avoid� We just have to notice that� as wt is obtained by a
search along the direction ht starting from wt��� there exists a value �t such that
wt �wt�� � �tht� From ������� we then get�

gt�� � gt � H �wt � wt��� � �tHht ������

This leads to a more convenient expression for �t���

�t�� �
gt��

� �gt�� � gt�

gt� �gt�� � gt�
������

Another consequence of the line search along ht is that the gradient of C in wt is
orthogonal to the search direction� i�e� ht

�gt�� �  � Using ������ and ������� this can
be extended to �

hi
�gj � gi

�gj �  i 	� j ������

Equation ������ allows several rewritings of �������

�t�� � �gt��
�gt��

gt�gt
Fletcher�Reeves ������

�t�� � �gt��
� �gt�� � gt�

gt�gt
Polak�Ribi�ere ������

�t�� � �gt��
� �gt�� � gt�

ht
�gt

Hestenes�Stiefel ������

According to ������� equations ������ and ������ could be simpli�ed� The e�ects of
the three formulas are indeed the same when the cost is exactly quadratic� On the
other hand� in real cases such as non�linear regression� this is not the case� and
the Hessian is not constant� ������ and ������ then have a better behaviour as they
restart the algorithm by resetting the search direction to the gradient of the cost
function� Indeed� when two successive gradient directions are too close� we have
gt�� 
 gt leading to ht�� 
 gt���

The conjugate gradient algorithm applied to a P �dimensional quadratic cost func�
tion �nds the exact minimum in at most P iterations� Furthermore� the rate of
convergence is given in the following proposition�

�What we actually want is the projection of the gradient direction on the hyper�plane conjugate
with the previous search direction� This is done by subtracting the right component along ht�
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Figure ���� Comparison of the convergence rates of the conjugate gradient
�dashed� and steepest descent �solid� algorithms� as a function of the condition
number� If the condition number is ���� wt gets � closer to bw with every steepest
descent iteration� and �� closer with a conjugate gradient iteration�

Proposition ��� Consider a quadratic error function with constant Hessian H of

condition number c� The rate of convergence of wt towards the minimum bw using

the Conjugate Gradient algorithm is given by�

C �wt�� C � bw�
C �w��� C � bw� � �

�p
c� �p
c� �

��t
���� �

Proposition ��� shows that beside an initial factor of �� the convergence of the
conjugate gradient algorithm is much faster than using a steepest descent� This is
illustrated by �gure ���� For high condition numbers� there is virtually no conver�
gence of the steepest descent� the rate c��

c�� is close to �� so that according to ������
the distance to the solution decreases extremely slowly� On the other hand� the con�
jugate gradient keeps decent convergence properties even with very ill�conditioned
matrices�

As an example� let us consider a Hessian with a condition number of c � �� � After
� iterations� the steepest descent algorithm leads to a decrease in excess error of

� �
�
c��
c��

��� 
  �� i�e� � %� Using a conjugate gradient� we get � � �
�p

c��p
c��

��� 

 ��� hence a reduction of more than half the possible decrease in error� It takes ��
iterations to get within �% of the minimum with conjugate gradient� more than �  
using the steepest descent�

Finally� it should be noted that the conjugate gradient optimisation scheme does
not depend on the setting of an extra parameter such as the learning rate in both
steepest descent and stochastic gradient descent�

c�C� Goutte ����
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���� Newton and quasi�Newton

We will now go back to the quadratic approximation formula ������� Let us �rst
recall from ������ the derivative in wt of the cost�

rc �wt� � H �wt � bw�
leading to the direct estimation�

bw � wt �H��rc �wt� ������

This is similar to the Newton method for �nding roots in one�dimensional problems�
Formula ������ is valid for an exactly quadratic cost function� In the general case�
the Newton algorithm in multi�dimensions consists in choosing the search direction
accordingly�

wt�� � wt � 	t��H
��rc �wt� ������

where 	t�� is set by a simple line search�

Expressed as it is� this second order method requires the calculation of the Hessian
of the cost� Unfortunately� the full Hessian calculation and inversion is usually too
costly to be reasonable in the context of non�linear models such as Neural Networks�
A few shortcuts� however� allow to use the basic idea of the Newton algorithm�

The quasi�Newton method consists in approximating the Hessian so it is easier to
calculate� Indeed� consider the expression of the cost with quadratic error in �������
We can rewrite this quantity as S�w� � �

N

PN
i�� �i �w�

�� so that the Hessian becomes�

HS �w� �
�

N

NX
i��

�
�i �w�H� �w� �r�i �w�r�i �w��

�
������

We will now neglect the �rst term under the sum� which is hard to estimate� Fur�
thermore� it is potentially problematic� as it could lead to a non positive de�nite
Hessian�

This is the Gauss�Newton approximation� and the Hessian becomes�

HS �w� �
�

N

NX
i��

r�i �w�r�i �w�� ������

The inverse of the approximate Hessian can be computed using the Sherman�Mor�

rison inversion identity by the following iterative formula�

H��
i � H��

i�� �
H��

i��r�i �w�r�i �w��H��
i��

� �r�i �w��H��
i��r�i �w�

i � � � � � N ������

and H� is chosen as a matrix the inverse of which is easy to calculate� After N
iterations� H��

N approximates the inverse of the approximate Hessian�

Another method for computing the approximate inverse Hessian information needed
for the Newton algorithm is the one�step memory�less Broyden�Fletcher�Goldfard�
Shanno method �BFGS�� Let us �rst introduce yt � rS �wt����rS �wt� and st �
wt�� � wt� The positive de�nite secant update for the inverse Hessian is�

H��
t�� � H��

t �
stst

�

yt�st

�
� �

yt
�H��

t yt
yt�st

�
� H��

t ytst
� � styt

�H��
t

yt�st
������
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This expression ensures that the Hessian and its inverse are symmetric positive
de�nite� The costly aspect of the update is to keep the entire inverse Hessian in
memory� To avoid this� the update rule ������ is applied at each time step with the
�crude� approximation that Ht 
 I� leading to an actually memory�less method�

For an exact line search� BFGS is equivalent to the conjugate gradient algorithm�

���� Bias�Variance decomposition

The post�learning generalisation error� as de�ned in ������ is dependent upon the
training set� It is indeed the minimisation of the training error for this speci�c set
that leads to the estimate of the parameters� bw�
In order to assess the generalisation abilities of a given model independently of the
training sample� it is suitable to consider the expected generalisation error��

hG � bw�iD �

Z D�
f �x�� fbw �x�

��E
D
p �x� dx ������

where the average is performed over all possible training sets� as in section ����

Let us now introduce fD �x� �
�
fbw �x�

�
D in the squared term�

hG � bw�iD �

Z D�
f �x�� fD �x� � fD �x�� fbw �x�

��E
D p �x� dx ������

When this expression is developed� the cross�product disappears when taking its
expectation� leaving�

hG � bw�iD �

Z
�f �x�� fD �x��� p �x� dx

�

Z D�
fbw �x�� fD �x�

��E
D
p �x� dx ������

The �rst part is the squared deviation between the system and the expectation of
the model over all possible training� It is called the squared bias as it measures
the intrinsic bias the model has� The second part is the average of the squared
�uctuations of the model around its expectation� i�e� the variance�

Accordingly� the generalisation error can be separated into three components�

�� The noise level �cf� section �����

�� The squared bias induced by the choice of a model�

�� The variance coming from the sampling�

Let us notice that if there exist a set of parameters w� such that for all x� fw� ��
fbw �x�

�
� then by direct application of the above formulas� w� minimises the gener�

alisation error and fw� is the optimal model� However� there is no guarantee that
such a model exists� as the models do not necessarily constitute a vector space�
Furthermore� even if such a model exists� it may not be possible to obtain it by
minimisation of the empirical cost on a given set of data�

�the noise term has been discarded here according to section ���� It will be taken into account
in the analysis below�
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Figure ���� Linear modelling of the re�
lationship between the initial angle and
the range� The crosses are the data� the
solid line is the theoretical relationship�
and the dashed line is the linear model
obtained from the data�
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Figure ���� Same as �gure ���� but using
a �th order polynomial modelling� The
model is now highly dependent on the
data�

���	 Limits of a simple regression

The bias!variance decomposition gives insight into a possible pitfall of the simple
empirical cost minimisation as suggested in this chapter�

Let us consider that we perform � experiments where we measure the range of a
projectile shot at various angles with a given speed of �m�s��� With no perturbation�
the theoretical link between the angle �i and the range di is given by the formula
di �

��
g sin ��i with g � �� ��m�s���

However� consider now that we attempt to model this relationship using a simple
linear model� The result for a given experiment is displayed in �gure ���� It is likely
that the slope of the line would not change drastically for di�erent sets of points�
the variance of the estimate is very low� On the other hand� the bias is high because
the model is intrinsically incapable of modelling the right relationship�

On the other hand� when we perform a polynomial regression with a �th order
polynomial� the model seems to somehow get closer to the data� So close that we
would expect the average estimation to be the average of the data� i�e� the actual
theoretical curve� The bias is thus very low� but the variance is high as the curve
tends to over��t the data�

This simple example shows� with the help of the bias�variance decomposition� that
optimisation of the empirical cost does not guarantee the success of the learning
procedure� In the next chapter� this will be detailed� and regularisation is introduced
as a possible solution�
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COMMENTS

��� The importance of modelling appears in many �elds� Let us cite for example
system identi�cation �N&rgaard� ������ control �Goutte and Ledoux� ������ or
time series modelling �Kouam� ������ This thesis will focus on system identi�
�cation and time series� That is why we deal here with univariate outputs�

��� The use of optimisation for learning is connected to the study of adaptive
systems such as e�g� �Tsypkin and Nikolic� ������ See also �Bottou� ����� in
the context of neural networks� The de�nition of empirical and expected risk is
at the basis of statistical learning theory �see e�g� Vapnik� ������ Some authors
favour o��training�set error �see Wolpert� ����� �in our case however the two
notions meet�� The consistency of the minimum of the empirical risk has been
studied by White �������

��� The maximum likelihood method was developed by Fisher in the ��� s for es�
timating the unknown parameters of a density� Maximum likelihood estimators
are used in numerous �elds such as parameter estimation� signal processing�
equalization� etc� The probabilistic point of view will be extended in chapter ��

��� This is a standard result� A similar derivation was presented by Bishop �����b��

��� The topic of linear regression is extensively covered in many textbooks on
statistics� It is a basic tool� sometimes used in di�erent contexts� In section B��
for example� we evoke the use of a local linear �t in a non�parametric estimator�

��	 The error estimator derived in this section is due to Akaike ������� Similar
estimators are derived in the non�linear case� using a locally linear approxima�
tion �i�e� a quadratic approximation to the cost function�� For a fast derivation�
see e�g� Rasmussen �������

��� Despite a wealth of literature on neural networks� few books o�er a truly sound
introduction to this class of models� �Hertz et al�� ����� has been acclaimed
for some time as the reference in the �eld� It has now been joined by the
books by Bishop �����a� and Ripley ������� Incidentally� these books adopt a
statistical perspective�

��� The back�propagation rule is usually credited to Werbos ������ or Rumelhart
et al� ������� However� it was discovered earlier in di�erent contexts� Vapnik
������ mentions its use in �Bryson et al�� ����� for solving some control prob�
lems� Bottou ������ cites Amari ������ in the context of adaptive systems and
notes that it is nothing more than proper application of the derivation rules
invented by Leibnitz in the ��th century�

��� Optimisation methods are covered in many books such as e�g� �Fletcher� �����
or �Press et al�� ����� for one�dimensional and multi�dimensional techniques�
The quadratic approximation is necessary to handle non linear problems� How�
ever� methods presented here are also used in the linear case� Indeed� iterative
minimisation methods are a common alternative to the computationally ex�
pensive matrix inversion in equation �������
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�� Parametric regression

���� According to Press et al� ������� the steepest descent algorithm dates back to
Cauchy� Its convergence rate is a standard consideration in numerical anal�
ysis� It is derived� e�g� by M&ller �����a�� The convergence problem for ill�
conditioned Hessians is illustrated e�g� in �M&ller� ����a�� page �� and �Press
et al�� ������ page ����

���� The stochastic algorithm and the associated convergence conditions date back
to Robbins and Munro ������� This algorithm was applied to neural networks
at the end of the eighties by Rumelhart et al� ������� A good presentation in�
cluding demonstrations of the convergence of the algorithm is given in �Bottou�
������

���� The conjugate gradient algorithm is studied extensively in the linear optimisa�
tion literature� A neural network perspective is o�ered by M&ller �����a�� The
same author mentions several extensions of the conjugate gradient algorithm
designed to handle stochastic training� and proposes one in �M&ller� ����b��

���� Second order methods are presented by Battiti ������� who con�rms the equiv�
alence of BFGS and conjugate gradient� Equation ������ is a simpli�cation of
the update presented by Battiti ������� page ���� It corrects the expression
given by M&ller �����a�� page ���

���� The bias�variance decomposition is a classical tool is statistics� see chapter B
for some non�parametric cases� It has been introduced to the neural networks
literature by Geman et al� ������� Contrary to the regression estimation case�
the expression of this decomposition for classi�cation problems is an open� and
very active� area of research� see �Tibshirani� ����	 Friedman� ����� among
others�

���	 The trade�o� between bias and variance and its in�uence on learning will also
be illustrated in chapter B for non�parametric models�
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Regularisation

��� Introduction

The purpose of this chapter is to carry on with the analysis started in chapter ��
In the previous chapter� we have linked the problem of learning to �parametric�
regression estimation� The underlying inductive principle consists in minimising a
cost functional� such as the quadratic cost� depending on the parameters and the
data� so as to identify the parameters of the model�

In this chapter� we show that minimising the simple cost calculated on the data does
not yield good result in real� noisy situations� It is shown that the learning prob�
lem presented as a simple empirical risk minimisation� is an ill�posed problem� The
concepts of well�posed and ill�posed problems and the technique of regularisation
are introduced in a general context� Afterwards� we link regularisation and noise
injection on the input� We derive an original equivalence between stopped training
and regularisation in section ����� We introduce afterwards the dichotomy between
formal and structural regularisation techniques� in the context of non�linear para�
metric neural networks models� Another original contribution of this chapter is the
analysis in section ���� of a regularisation technique that combines both aspects� an
analysis that will be carried out further in chapter ��

��� Stability of non�regularised solutions

At the end of chapter �� we have displayed an example suggesting that the minimi�
sation of the empirical cost could lead to inappropriate models� We can carry this
idea further by focusing on the case of polynomial regression� For a number N of
points� there exists a polynomial of degree N � � that approximates these points
arbitrarily closely �Stone�Weierstrass theorem��

Let us consider a simple parabolic interpolation involving � points� These � points
determine a unique second�order polynomial y �x� � ax�� bx� c� as long as no two

��
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Discontinuity of the parabolic interpolation

Figure ���� � di�erent ��points parabolic interpolations for four very close data
sets display a discontinuity in the solution� Two points are held �xed� and very
small variations in the third one provoke large variations of the solution�

abscissa are the same� To illustrate our point� we will keep the two �rst points �xed
in ���	  � and ��	  �� respectively� The last point depends on a variable and is set to
�d	  ���� so that the solution is the simple symmetric parabola y �x� � ax� � a� with
a � ���

d��� � for all values of d 	� ���
Figure ��� displays a couple of solutions corresponding to very close values in the
data� A small discrepancy in the variable data point can lead to an arbitrarily large
variation in the solution�

This arti�cial example shows that the learning process �polynomial regression in that
case� is not necessarily continuous in the data� This can lead to obvious problems
in the case where learning is applied to real� noisy data� In that case� noisy samples
from the system will provide di�erent data sets� However� the target function� i�e�
the underlying process� is still the same so we would expect the learning procedure to
yield similar� if not identical� results� On the other hand� a discontinuity in solution
is the sign of a potentially large generalisation error�

The next section poses the problem in a more formal way� which leads to the de��
nition of the concepts of well�posed problems� ill�posed problems� and regularisation�

��� Well�posed and ill�posed problems

The existence of ill�posed problems has been observed in the early ��  s by the
French mathematician Hadamard� Let us consider a typical inverse problem� We
wish to solve the equation�

Af � F� F � F �����

where A is an operator and F belongs to the metric space F � A can be a linear
as well as a non�linear operator� Typical examples include derivative or integral
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More on ill�posed problems ��

operators� For example� a system governed by a second order di�erential equation
can be discretised and expressed as a linear equation A�f � F � where F is a set
of discrete measurements and A is a known matrix representing the di�erential
equation on f � E�g� the second derivative is expressed simply as a band diagonal
matrix with �� on the diagonal� and � on the upper and lower �rst bands�

In the context of parametric regression estimation� F is the observed data� and
f � W is the unknown model� uniquely determined by a set of parameters� This is
typical of inverse problems as we wish to invert the cause�system � e�ect� Knowing
the cause �resp� the system� and the e�ect� we try to deduce the system �resp� the
cause��

Hadamard noticed that in some cases� ����� is ill�posed � a small deviation of the
right�hand side can result in a large deviation in the solution f � More precisely� let
us de�ne the concept of Hadamard well�posedness� ����� is a well�posed problem if
the following conditions hold�

�� F �F � �f �W� Af � F � A solution to ����� exists�

��  �f�� f�� � W�� Af� � Af� �� f� � f�� The solution is unique��

�� With Af � F and A 'f � 'F � we have limF� 	F f � 'f � The solution is stable
with small variations in the right�hand side of ������

The third condition above is equivalent to writing that the inverse operator A�� is
continuous� In the context of this study� the inverse operator is the learning proce�
dure� Simple learning procedures such as minimisation of the quadratic cost are not
continuous as the example in section ��� shows� and the learning problem is thus
ill�posed�

It is interesting to notice that Hadamard thought that ill�posed problems where
restricted to mathematics and that real�life problems were well�posed� However� it
was later found out that many actual inverse problems are ill�posed� This is true
in a large number of �elds� from mechanics to geophysics or statistics� as we will
later show� A classical example for linear ill�posed problem is a Fredholm integral
equation of the �rst kind�Z b

a
K �x� u� f �u� du � F �x� � a � x � b �����

where K is a known squared integrable kernel� and f is the sought solution�

��� More on ill�posed problems

The de�nition of Hadamard well�posedness does not accommodate a number of
tasks such as parameter restoration� This called for an extension of the de�nition
of ill�posed problem� that could only arise when the need to solve such problems
appeared�

�
� �f�� f�� � W

� is equivalent to � �F�� F�� � F
� according to the previous condition�

c�C� Goutte ����



�� Regularisation

Tikhonov well�posedness restricts the de�nition in section ��� to a set R � W� The
restriction made by Tikhonov is re�ected in the following result� If the operator A is
non�ambiguous and continuous on a compact set R� then the inverse operator A�� is
continuous on the imageAR� Having a continuous operator with a continuous inverse
on compact sets�� the stability condition is guaranteed� Tikhonov well�posedness can
be expressed by the following conditions� problem ����� is well posed if there exist a
subset R � W� such that

�� It has a solution� F �AR �f �R� Af � F �

�� The solution is unique  �f�� f�� � R�� Af� � Af� �� f� � f��

�� For any sequence fi � R and f � R� such that limi��Afi � Af � we have
limi�� fi � f �

The last condition is especially interesting in the context of a learning procedure
based on the minimisation of a given cost C� It means that is we have a series of
models fi such that minC �fi�� minC �f�� then likewise fi � f � This is precisely
what we were missing earlier� Indeed� the law of great numbers does guarantee the
convergence of the empirical cost to the expected cost �section ����� but only in the
case where the problem is well�posed will the corresponding convergence

be true for the solution of the minimisation problem�

In the remainder of this chapter� we will set ourselves in the context of Tikhononv
well�posedness� The original� ill�posed task is to solve the minimisation problem�

ew � argmin
w

G �w� �����

As mentioned in the previous chapter� this task is unattainable� and we have to
optimise an estimator of G�w�� The approximated problem is thus to minimise the
empirical cost rather than the expected cost�

bw � argmin
w

S �w� �����

As will become clear in section ���� this minimisation is not a continuous function
of the data� Small perturbations on the data can lead to high discrepancies in the
estimated parameters bw�

��� Tikhonov regularisation method

A main contribution of Tikhonov is that he proposes a regularisation method� i�e�
a method turning an ill�posed problem into a close well�posed problem� The idea is
to con�ne the problem to a restricted set by the use of a regularisation functional
R �f��

In the context of cost minimisation in parametric regression� this functional will typ�
ically depend on the parameters� Setting a constraint on this functional by R �f� � c

�The image of a compact set through a continuous operator is compact
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Regularisation functionals ��

de�nes a structure of subsets �de�ned via c� of the function set W� In these condi�
tions� the regularised minimisation problems we wish to solve are�

bwc � argmin
R�f��c

S �w� �����

Equation ����� is equivalent to seeking the function minimising the empirical cost in a
small subset ofW� The problem here is that it is di�cult to carry out a minimisation
with inequality constraints� However� according to the Kuhn and Tucker theorem�
there is an implicit equivalence between solving ����� and minimising a modi�ed
version of the cost� bw� � argmin

w
�S �w� � �R �f�� �����

This is reminiscent of the method of Lagrange multipliers� The regularisation pa�

rameter � also called hyper�parameter� implicitly de�nes a structure on the possi�
ble models by constraining the model� Roughly� low values of � in ������ i�e� weak
constraint� correspond to high values of c in ������ On the other hand� a large reg�
ularisation parameter gives higher importance to the minimisation of R �f�� It thus
corresponds to a low value for c�

The regularised cost minimisation problem is a trade�o� between �tting the data
�minimising S �w�� and constraining the model to stay in a small compact subset
�minimising R �f��� Furthermore� the balance between satisfying the constraint on
the model and staying close to the data is governed by the regularisation parameter
��

��	 Regularisation functionals

In the previous section� we have introduced the use of the regularisation functional
R �f� in order to make the learning problem well�posed� Not all functionals� however�
are well suited to regularisation of an ill�posed problem�

As we have seen above� the regularisation constraint should actually de�ne a struc�
ture of compact sets� In order for a functional R to be suitable� it has to ful�ll a
number of conditions�

�� R is semi�continuous on a dense subset ofW� This is the case for any continuous
function on W�

�� R is positive� f � W� R �f� �  �

�� A solution of problem ����� exists in the domain of de�nition of R�

�� R de�nes a structure of compact sets� c �  � ff jR �f� � cg are all compact�

If all these conditions are met� R deserves the name of regularisation term� For a
regularisation term R� the minimisation problem ����� is a well�posed problem�

The above conditions are far from being restrictive� This allows for a large class of
regularisers to be used� In particular� a common choice for R consists in taking a

�This extension is due to the vocabulary used in Bayesian inference� see chapter 	�
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Figure ���� The �� data points are displayed together with the sinusoid from
which they were sampled� with low noise added �variance �������

norm on W� R �f� � kfkp� or some power of this norm� In the same line of idea�
another common choice is to use an operator L� typically a derivative operator�

R �f� � kLfkp �����

From section ���� to section ����� a number of di�erent regularisation techniques
are introduced in the context of neural network models�

��� An example of ill�posed problem

Let us now consider a classical example of ill�posed problem in non�linear regression�
The setting is extremely simple� we try to �t a sinusoid on � points with x�values
generated in the interval " 	 �# and y�values in "��	 �#�
The model is a simple one�parameter function y � sin �a�x�� It is non�linear and
depends on a single parameter a� the frequency� Let us consider for example that we
generate � slightly noisy points from one such sinusoid with a � �� The reference
and the associated points are presented in �gure ����

The noise level is rather low� with a sample variance of  � ��� In this case� the
underlying mapping is taken as one of the possible models� The best choice for a
�i�e� the one that generalises best� would obviously be ba � �� In the context where
we do not know the exact mapping� it is unnecessary to resort to multi�dimensional
optimisation as in chapter �� because the model depends on a unique parameter�
A simple line search will su�ce� The mean squared error is a function of a single
parameter�

S �a� �
�

� 

��X
x��

�
y�i� � sin �a�x�

��
�����

Figure ��� displays the behaviour of the mean squared error S as a function of a on
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Figure ���� The mean squared error cal�
culated on the �� points for a between �
and �� displays two deep minima� one for
a � ����� the other one for a � ���
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Figure ���� Solution of the mean squared
error minimisation �dashed� together
with the data points ��� and the under�
lying mapping �solid��

the interval " 	 ��#� As expected� there is a sharp decrease around � �close to �� � to
be precise�� where the MSE value is  � ��� However� it appears that this is only a
�good� local minimum� The global minimum is in ba � � � where
the MSE actually
reaches  � The resulting model is plotted together with the underlying function and
the � points of �gure ���� The empirical solution ba indeed minimises the distance
to the data as these points are actually on the model�

It is clear though that this solution is a very bad one in terms of generalisation� Apart
from a couple of places where the curves cross� ba produces wild guesses irrelevant
to the underlying mapping� The reason for this is simple� Whatever set of N point
we get with ordinates in "��	 �#� there exists a value of a such that the associated
sinusoid approximates the data arbitrarily closely� This is re�ected in the fact that
the sinusoid� even though it has a single parameter� has in�nite capacity� it can
interpolate with arbitrary precision any set of any number of points within its range�

In order to avoid this embarrassing behaviour� let us add a small regularisation term
to the mean squared error� R �a� �  � �a�� This term is a regularisation term� as it
obviously meets all the requirements listed in section ���� It corresponds to putting
a penalty on large values of a� This favours low frequencies� i�e� smooth functions� a
rather reasonable �and very common� constraint�

The resulting regularised cost is displayed on �gure ���� The cost function has
been �ironed� by the regularisation term� and only one clear minimum remains�
for ba � �� �� Due to the regularisation e�ect� this value is slightly smaller than that
corresponding to the �rst local minima above� Figure ��� displays the shape of the
resulting model� together with the original mapping and the data points� Despite the
limited amount of data available� the model provides a fairly good approximation of
the underlying mapping in the domain of the data�

�The fact that we get ba 
 �� is of course not related to the number of data�
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Regularised cost for the 10 points sinus problem

Figure ���� With the help of a regulari�
sation term� the cost function favours low
values of a� resulting in one clear mini�
mum a � �����
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Figure ���� Solution of the regularised
cost minimisation �dash�dotted� together
with the data points ��� and the under�
lying mapping �solid��

��� Density estimation is an ill�posed problem

Let us recall that the learning problem is to obtain a function f in a given set W�
that minimises the generalisation error�

G �w� �

Z
e �x�w� p �x� dx �����

Let us now consider the problem of estimating the density p �x�� If we estimate this
density correctly� we could hope in turn to estimate G �w�� We now wish to solve
the probability distribution problem� i�e� �nd density p �u� satisfying�Z x

��
p �u� du � P �x� � x ���� �

where P �x� is an unknown probability distribution function� but we have a number
N of examples x�i� available� sampled from this distribution� The unknown p�d�f�
can then be approximated by�

PN �x� �
�

N

NX
i��

H
�
x� x�i�

�
������

where H is the Heavyside �step� function� Its derivative is the Dirac function �� Ac�
cording to the Glivenko�Cantelli theorem� the empirical distribution function ������
converges uniformly towards the actual p�d�f� The approximate problem of density
estimation becomes� Z x

��
pN �u� du � PN �x� � x ������

and the obvious solution to this problem is�

pN �x� �
�

N

NX
i��

�
�
x� x�i�

�
������
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Regularisation parameter ��

the empirical density estimate� Despite the �uniform� convergence of PN towards
P � the solution pN of ������ does not converge towards the �unknown� solution p
of ���� �� The density estimation problem is thus ill�posed�

Notice that the use of the empirical density ���� as an estimate for p �x� in �����
leads to the expression of the empirical risk or �unregularised� training error�

��� Regularisation parameter

In section ��� we have noticed that the regularisation parameter � sets the balance
between the �t to the data and the constraint on the model� In the previous sec�
tion� the e�ect of regularisation has been displayed on a toy example� However� no
justi�cation has been given regarding the choice of the  � � as the regularisation
parameter�

The choice of the proper amount of regularisation� i�e� the choice of the optimal �
is indeed a central preoccupation in regularisation� In the line of the de�nition of
Tikhonov well�posedness� it corresponds either to the restriction we make on the
possible subsets of solutions or �it is implicitly equivalent� to the strength of the
constraint on the model�

Unfortunately� there is no general method to obtain the optimal level of regularisa�
tion� A number of methods exist that estimate this optimal level� It is one of the goals
of this thesis to give such methods and exhibit their links and di�erences� A number
of techniques are covered in chapter �� such as cross�validation and prediction error
estimation� Chapter � takes a di�erent standpoint and presents the relationship be�
tween regularisation and Bayesian inference� with associated methods for the setting
of ��

��� Input noise

It has been reported that adding noise to the input data during the optimisation
procedure is a way of improving the generalisation abilities of the model� This e�ect
is often called �jitter� to distinguish it from the e�ect of the usual� corrupting noise�
In this section� we analyse the e�ect of jitter� and demonstrate its equivalence with
a form of regularisation�

Let us �rst consider the linear case� The addition of a jitter � on the input produces
a data matrix �X� ��� The jitter is sampled from a Gaussian distribution of  mean
and variance ��� independent of both input and output values� For a large number
of data�� we have� �

�X� ��� �X� ��
�


�
X�X� ���

�
������

thanks to the independence assumption� Furthermore� ��� 
 N��I� Under the same

�this assumption does not hold if the number of data is low and jitter is added once and for all�
It does hold however� when each presentation of an input to the optimisation procedure is made
with a dierent jitter �� In the linear case� this can be done by replicating the data matrix several
times with a dierent jitter�
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�� Regularisation

assumptions� the cross product gives �X� ���Y 
 X�Y� The resulting estimator
for the parameters is� bw 
 �

X�X�N��I
���

X�Y ������

Comparing ������ and ������ shows that the use of jitter is equivalent to adding a
small diagonal term before inverting X�X� This is known as ridge regression� the
most simple form of regularisation for linear models�

In order to study the e�ect of the noise on non�linear regression� let us perform a
Taylor expansion around each data point�

fw
�
x�i� � �

�
� fw

�
x�i�

�
� ��rfw

�
x�i�

�
�

�

�
��Hfw

�
x�i�

�
�� o

�
���

�
������

In order to keep notations concise� we will note r�i� � rfw
�
x�i�

�
and H�i� �

Hfw

�
x�i�

�
� Using the expansion ������� we derive the expression of the empirical

risk with jitter�

S� �w� �
NX
i��

�
y�i� � f

�
x�i� � �

���
�

NX
i��

�
y�i� � f

�
x�i�

���
�r�i�����r�i�

��
�
y�i� � f

�
x�i�

���
��r�i� �

�

�
��H�i��

�
� o

�
���

�
������

As we focus on the average behaviour of jitter� we have ��� 
 ��I� ��H�i�� 

��tr

�
H�i�

�
� while the term with a single � in the last parenthesis� ��r�i�� disappears�

The �nal result is then�

S� �w� � S �w� � ��R �fw� ������

where the expression of R �fw� is given by�

R �fw� �
NX
i��

��
rfw

�
x�i�

��� � �y�i� � fw
�
x�i�

��
tr
�
Hfw

�
x�i�

���
������

Expression ������ looks very much like a form of regularisation� where �� plays the
role of a regularisation coe�cient� The higher the level of noise� the more constrained
the model� However� a closer look at ������ shows that function R �fw� does not
qualify as a regularisation functional� according to section ���� It is continuous as long
as the model is twice continuously di�erentiable� but it is certainly not necessarily
positive� The curvature of the model as well as the estimation error can make the
second term on the right�hand side of ������ negative�

It has been argued that the second term of ������ involving the second derivatives�
vanishes to order ��� This approximation allows for a simpli�cation of ������ into�

R �fw� �
NX
i��

PX
k��

�
�fw
�wk

�
x�i�

���
���� �
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This is indeed a regulariser� in the spirit of equation ���� With this approximation�
the e�ect of noise added on the input during training becomes clear� the variance
of this noise behaves as a regularisation parameter� and the regularisation term is
linked to the �rst derivative of the model� This constraint favours slowly varying
functions� leading to a smooth model�

It should be noted that the approximation involved in obtaining ��� has been
criticized as unsound and potentially harmful if it is used directly during training�
Indeed� it is only valid at the minimum or in a close neighbourhood� During most of
the training� it is incorrect� and does not allow to characterise the actual regularising
e�ect of noise injection� Even in very simple cases� such as a unique hidden neuron� it
can lead to incorrect results� However� the derivation based on the Taylor expansion
stays valid and gives an elegant explanation of the e�ect of noise injection on the
input� The problem of estimating the actual regularising e�ect of noise injection�
however� is still open�

���� Regularisation in neural networks

The simplest form of regularisation consists in adding a regular term R �w� to the
empirical cost S �w�� weighed by a regularisation coe�cient ��

C �w� � S �w� � �R �fw� ������

In the context of neural networks� this corresponds to formal regularisation� There
are a number of choices for the functional R �fw�� and some of them are investigated
in sections ���� to �����

Another widespread regularisation technique in neural computation is called struc�

tural regularisation� As the name indicates� it corresponds to limiting the capacity
of a network by modifying the structure of the network� Sections ���� and ���� are
relevant to this kind of regularisation�

The structural regularisation technique suppresses a number of parameters in the
model� In doing so� they indeed reduce the capacity of the model�� However� this
is not exactly in line with the de�nition of Tikhonov regularisation� If we recall
sections ��� and ���� a problem is well�posed in Tikhonovs sense when the model
is constrained to be in a subset of W� Deleting one parameter amounts to limiting
the search for the right model to a subspace �of dimension P � �� of the original�
P �dimensional parameter space� �

It should be noted that such a subspace is not compact if the original space is not�
This means that there is no guarantee that the inverse operator is continuous� In
other words� limiting the search to such a subspace does not necessarily make the
problem well�posed �in Tikhonovs sense�� It can however improve generalisation by
limiting the capacity of possible models�

�The capacity is not linked to the number of parameters in the sense that a model with one pa�
rameter can very well have in�nite capacity �cf� section ����� However� for a given model� suppressing
some parameters actually lowers the capacity
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� Regularisation

���� Weight�decay

The simplest way of performing formal regularisation is to use the second norm of
the parameter vector�

RWD �fw� � kwk�� �
PX
k��

w�
k ������

This technique is known as weight�decay for a simple reason� The derivative with
respect to weight wk is �R

�wk
� �wk� If this constraint alone in�uences the update of

the weight� its behaviour obeys the simple di�erential equation �wk
�t � ��wk� giving

the solution w �t� � exp ���t�� corresponding to an exponential decay of the weight
towards  �

In a regularised cost minimisation problem� the use of a weight decay favours mod�
els with low weights� This has a natural explanation as large parameters �excluding
biases� will lead the model to produce sharp variations in some regions� according to
equation ������� The weight decay also corresponds in a way to an indirect smooth�
ness constraint� It should be noted though that a given level of regularisation could
be reached with a number of equal magnitude parameters� as well as one parameter
of large magnitude� and the remainder with very low values� The regulariser used in
section ��� is of the same kind�

An important information arises when we consider the derivative of the cost function
with respect to parameter wk�

�C

�wk
�

�S

�wk
� ��wk ������

Consider now the minimum bw of the cost function� where �by de�nition� the gradient
is zero� ������ becomes�

�S

�wk
� ��� bwk ������

The left�hand term in ������ represents the local variation of the quadratic cost with
wk at the optimum bw� Its absolute value represents in some sense the sensitivity
of the data �t to variations in parameter wk� With a weight�decay� this sensitivity
is proportional to the weight value and can di�er greatly among the parameters�
Furthermore� this sensitivity is highly arbitrary� there is no reason why the sensitivity
to a given weight should be higher than the sensitivity to a second weight� just
because the �rst one happens to have a larger absolute value�

We will come back to this topic later in section ���� when we consider an alternative
regulariser�

���� Regularisation and data normalization

We will now investigate the link between some formal regularisation functionals and
the need to normalize data in a multi�layered perceptrons with linear output�
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Regularisation and data normalization ��

It is well�known that normalization is not a theoretical necessity for existence of a
proper model� Indeed� let us consider that all data have been normalized by sub�
tracting a quantity  �usually the mean� and dividing the result by � �usually the
standard deviation��� It is easy to check that there is an equivalence between a
model with parameters w applied to the non�normalized data and a model with
parameters w applied to normalized data when the input weights obey�

� � j � H�

�
� � i � n� wji � �wji and wj� � wj� �

nX
i��

wji

�
������

and the output weights satisfy�

� � j � H� Wj � �W j and W� � �W � �  ������

So normalization does not matter as far as the existence of the model goes� On the
other hand� there can be some numerical problems when handling large data� due
to the saturation in the sigmoid function� According to equations ������ and �������
the calculation of the gradient of the cost with respect to the input weights involves
the derivative of the transfer function� When the input to the hidden cell� i�e� the
weighted sum of the input� is large �in absolute value�� this derivative is naturally
zero� This means that the weight is �freezed�� its derivative is so small that successive
iterations of the learning algorithm cannot make it evolve�

This behaviour manifests itself by the presence of large plateaus on the cost surface�
as illustrated on the right of �gure ���� This �gure displays the projection of a cost

surface on the ���th parameter of a neural network model� This model was obtained
by training a � hidden cells network on the non�normalized Sunspots data set� The
total number of parameters is ��� in that case� and parameter ��� corresponds to a
connection between the seventh delay in the input layer and the ninth hidden cell�

According to this observation� normalizing the data has a practical aspect� as raw
data can be more di�cult� or practically impossible� to learn� In this context� the
weight�decay constraint towards  allows to �de�freeze� the weight� The regularised
cost is in dashed line in �gure ���� It is clear that the weight decay gives some
curvature to the cost surface in the plateau area� Accordingly� the derivative of the
cost function with respect to parameter ��� is non zero and optimisation is carried
on� The minimum on the regularised surface is in ��� close to the actual minimum
of the non�regularised cost�

Saturation problems are likely to happen when the non�normalized data have large
values� In such a case� � is large� and the input weight correspondence ������ requires
small values for the weight of the non�normalized network� This is precisely the kind
of constraint that a weight�decay regulariser imposes�

Finally� let us note that the modelling of non�normalised can be performed e�ciently
by initialising the weights properly �e�g� small initial values when input values are
large�� However� the use of a weight�decay frees us from the problem of choosing the
proper initialisation� which is potentially di�erent for the input and output layer�

�we will here suppose that the normalization is identical on the input and on the output� It is a
reasonable claim in our case� as time�series modelling� for example� uses the same data on the input
and on the output� This is by no means a restriction� the same results can be derived for arbitrary
input and output� The same remark applies to the network structure� these results are not limited
to one hidden layer perceptrons�
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Figure ���� Projection of the regularised �dashed� and non�regularised �solid� cost
surfaces on the subspace corresponding to parameter ��� �out of ����� For non�
regularised cost� the parameter value is �� situated in the �at zone �x�� hence frozen�
With regularisation� the induced curvature makes the parameter ��� slide to the
minimum in �� �o��

���� Stopped training

A widely used technique for improving the generalisation abilities of a model is to
use stopped training � In order to analyse this technique� we will de�ne it as�

� Perform a non�linear optimisation of the quadratic cost S �w��

� At regular intervals� estimate the generalisation error bGt �w��

� Stop the algorithm at step tST such that bGtST �w� is minimal�

This de�nition is slightly broader than the usual implementation� The basic method
consists in splitting the available data in two sets� one for training� and one for
assessing the generalisation abilities of the model ��validation error��� This assess�
ment is made at every iteration� saving the parameters corresponding to successive
minimum of the validation error and restoring these parameters when training is
completed�

It will become obvious in chapter � that this �ts in our de�nition� where the scheme
known as �single validation� is used as a generalisation error estimator� The above
de�nition allows for a broader range of generalisation assessment methods� and pos�
sibly several weight updates between each�

In the most primitive setting� training is stopped as soon as the generalisation esti�
mate increases� This of course is a rather poor idea� as this estimate could very well
decrease further as the optimisation continues�

We will now perform a bit of analysis in the linear case� Let us recall the notations
from sections ���� ��� and ��� � We will consider the case of a standard gradient
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descent optimisation� where the update step is made with constant step�size� by�

wt�� � wt � 	rS �wt� ������

If this algorithm converges� it will do so to the uniqueminimum bw �
�
X�X

���
X�Y�

We can also notice that�

rS �wt� �
�

N
X� �Xwt �Y� �

�

N
X�X �wt � bw� ������

From ������� we easily obtain the expression of the parameter vector at step t�

wt �

�
I�

�
I� �	

N
X�X

�t� bw �

�
I� �	

N
X�X

�t
w� ������

Let us now use the eigen�decomposition of X�X � Q�Q�� with � the diagonal
matrix of eigen�values �k� We obtain the following result�

�
I� �	

N
X�X

�
� Q

�
I� �	

N
�

�
Q� � Q

�		

� � �   

 �� ��
N �k  

  
� � �

���Q� ���� �

As an aside� we notice that the algorithm ������ converges if and only if 	 
 N
	k

for
all k� The maximum step�size will then depend on the largest eigen�value �or rather
on its inverse��

We then obtain the expression of the parameter vector at step t� In order to simplify
the calculations� and as we are only interested in asymptotic behaviour� we will take
w� �  to eliminate the second term in the right�hand side of �������

wt � Q

�				

� � �   

 
����� ��

N
	k�

t

	k
 

  
� � �

�����Q�X�Y ������

As we shall prove� there is an asymptotic link between this result and the solution
obtained by ridge regression� i�e� a form of linear weight decay�

bw� �
�
X�X� �I

���
X�Y � Q

�			

� � �   
 �

	k��
 

  
� � �

����Q�X�Y ������

Equations ������ and ������ can indeed be put in similar forms� Now if we want
to exhibit any relationship between the ridge regression solution and the stopped
training solution� we have to investigate the links between the diagonal terms�

For a rather large value of �k� we see that �
	k��


 �
	k
� so the ridge term has no

e�ect on the solution� In the case of stopped training� for large �k in the limit of
the convergence� ��

N �k is close to  � The diagonal term in ������ is approximately �
	k

�we are in the linear case
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after only a few iterations� corresponding to the unregularised solution� as for the
ridge estimate�

For small values of �k� we have �
	k��

� �
� � o ���� and the following expansion for

the main term in the diagonal of ��������
�� �	

N
�k

�t
� �� �	t

N
�k � o ��k� ������

So in order to have an asymptotic equivalence between the stopped training and
ridge regression solutions� we need�

tST 
 N

�	�
������

Let us now denote bwT �t� the parameter estimate given by the stopped training
at step t� and bw� ��� the ridge regression estimate for a regularisation level of ��

Equation ������ tells us the we have bw� ��� 
 bwT

�
N
���

�
� The optimal regularisation

level corresponds to the minimum of the generalisation estimate� If we note E �w�
this estimate for a model of parameters w� it means that the optimum is reached for
�E
�� �  � We get by the derivation rule of composed functions�

�E � bw� ����

��
�
�
�
N
���

�
��

�E � bwT �t��

�t
� � N

�	��
�E � bwT �t��

�t
������

This shows that when a level � of ridge regression regularisation is optimal with
respect to the generalisation estimate E� the corresponding number of step ������
is optimal for the stopped training algorithm� Equation ������ also shows that the
derivatives w�r�t� � and t are of opposite signs� This is no surprise as those quantities
are inversely proportional� an increase in tTS corresponds to a decrease in ��

In short the above derivations give the following insight into stopped training�

�� For any number t of iteration in stopped�training� there exist a regularisation
level � with the same e�ect�

�� The model with best estimated generalisation error is the same for stopped
training and ridge regression�

���� �Optimal� methods� OBD� OBS� � � �

We will now present some results related to structural regularisation� in order to
better appreciate the assets of the technique presented in the next �and last� section�

The main pruning techniques for neural networks are Optimal Brain Damage� or
OBD � and Optimal Brain Surgeon� a�k�a� OBS � hence the title of the section�

Both methods rely on a second order approximation of the increase in error around
the minimum� For the quadratic cost S �w�� we have according to �������

S �w�� S � bw� � �

�
�w � bw��H �w � bw� � o

�
kw � bwk�� ������
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�Optimal� methods� OBD� OBS� � � � ��

where H is the Hessian of S� as usual� Using ������� we wish to pick the weight�s�
that can be deleted with an increase in error as small as possible�

If we denote by uk an orthonormal basis in parameter space� and bwk the k�th com�
ponent of the solution bw� the modi�cation �w in weight associated with deleting
parameter number k in bw is �w � bwkuk� In the case of OBD� the increase in error
is calculated immediately� and is called the saliency sk of parameter wk�

sk �
�

�
bw�
ku
�
kHuk �

�

�
bw�
khkk ������

where hkk is the k�th diagonal element of the Hessian H� Hence the OBD algorithm�

�� Train network to a minimum bw�
�� Compute saliencies sk for � � k � P �

�� Delete a number of weights with small saliencies�

�� Go back to step � with the remaining network� until there is no weight left
with small saliency�

OBD leads to e�cient pruning of weights with limited increase in error� However�
there are a couple of problematic issues� The weights are not independent� when
weight wk is deleted� the network is usually not at a minimum in training error in
the subspace of non�pruned parameters� In order to obtain the actual increase in
error between the best network with parameter wk and the best network without
parameter wk� it should be necessary to re�train the network after each deletion�
which is computationally di�cult� Another way to look at this problem� is to say
that OBD neglects the coupling between weights� i�e� makes the assumption that
the Hessian matrix is diagonal�

This suggests that we need a way to incorporate some more information in the algo�
rithm to take into account the e�ect of re�training in the calculation of the saliency
and in the update of non�pruned weights� This can be done by the OBS algorithm�
This algorithm calculates� on the basis of the Hessian� the expected increase in error
after re�training the pruned network� and computes the associated adaptation for
the other weights�

We want to �nd the modi�cation �w of the parameters that lead to the minimum
increase of S �w� subject to the constraint that bwk � �w uk �  � We use the method
of Lagrange multiplier� and form L � �

��wH �w �  � bwk � �w uk�� where  is an
unknown constant� The derivative of the Lagrangian w�r�t� �w is zero� so H�w �
�uk� Plugging this into our constraint we infer  which results in�

�w � � bwk

gkk
H��uk ������

where gkk is the k�th diagonal term of H�� � "gij #� The corresponding increase in
error is the saliency�

sk �
bw�
k

� gkk
������
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We notice that OBD is a special case of OBS where the Hessian matrix is diagonal�
and H�� � "��hkk#� The calculation of the full inverse Hessian information is very
costly� However� the OBS algorithm uses the Sherman�Morrison inversion identity
to compute approximate inverse Hessian information as in section ����� The OBS

algorithm can thus be described as�

�� Train network to a minimum bw�
�� Compute H���

�� Compute the saliencies sk�

�� Find the weight with smallest saliency�

�� If saliency is su�ciently small� update bw with ������ and go back to step ��

�� Otherwise terminate�

It is also possible to replace step � by a re�training of the network� in order to
compute the saliencies again on a re�trained network and check that this does not
modify the results�

With the approximate inverse Hessian calculation� the OBS scheme is computation�
ally feasible� but demanding� In the next section� we analyse a di�erent regulariser�
which provides some pruning� at a much lower cost than both pruning schemes
above�

Let us eventually note that we have not mentioned in this section any stop criterion�
Tuning the extent of the pruning is similar to tuning a regularisation parameter�
Typically� one will be interested in minimising generalisation error� and refer to
chapter � for a review of generalisation error estimators�

���	 Reconciling formal and structural regularisation

We will now analyse the e�ect of a new regulariser� It consists in using the ��norm
of the parameters� rather than the squared ��norm�

RL �fw� � kwk� �
PX
k��

jwkj ���� �

The e�ect of this regulariser appears when we perform a piece of analysis in a manner
similar to the end of section �����

The derivative of the regularisation functional is de�ned on IR� and takes values
�� �the sign function�� Equation ������ expressing the sensitivity of the data �t to
parameter wk becomes� ���� �S�wk

� bw����� � �� j bwkj �  ������

When bwk �  � the derivative does not exist� Let us consider what happens as �
grows� For � �  � the sensitivity is  � As � increases� parameter wk takes a value
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that allows the sensitivity to match the regularisation parameter according to �������
If parameter wk is not really necessary� it only �ts the noise� and is thus not very
sensitive to the data� When � grows and can not be matched by the sensitivity any

more� we have
��� �S�wk

� bw���� 
 ��

Let us now assume that parameter bwk is not zero� ������ would then hold� which
is in contradiction with the previous consideration about low sensitivity� This sim�
ple contradiction shows that our assumption is wrong� and we have bwk �  � the
parameter is pruned�

This regulariser has been called a pruning prior for this reason�� It is a regulariser
in the sense of section ���� which combines the e�ects of formal and structural reg�
ularisation� It actually splits the parameters into two sets� on one hand� those for
which ������ veri�es� which bear a small constraint in the style of formal regularisa�
tion� On the other hand� parameters the sensitivity of which is nowhere high enough
are forced to zero as in structural regularisation�

The fact that ���� � is not derivable in  is not a problem� First� it is extremely
unlikely that a parameter takes a value of exactly  during a numerical optimisation�
Even if it did� this would not cause any numerical problem� Furthermore� it is possible
to approximate r �x� � jxj arbitrarily closely by a series of function as�

r� �x� � � ln

�
� cosh

�
x

�

��
������

The r� converge uniformly towards r as kr� � rk� � � ln �� For the �rst and second
derivatives� simple convergence is achieved on IR��

This approximation is not necessary for any numerical optimisation method we can
think of� Furthermore� it leads to two main problems�

�� The division by a small quantity � in ������ leads to an over�ow in the hyper�
bolic cosine�

�� We have found empirically that the approximation leads to poorer convergence�

The convergence damage can be explained by the fact that the neighbourhood of  
in the approximation is smooth �by construction�� Instead of yielding a derivative
of ��� the regularisation term using the approximate form will have a vanishing
gradient around  ( This means that as the regularisation tries to prune a weight by
pulling it to  � the approximation prevents this e�ect to be completed�

The interesting properties of the ��norm regulariser are investigated further in chap�
ter ��

COMMENTS

��� A classical example of the instability of polynomial interpolation is given by the
�Runge phenomenon�� It consists in approximating the function f �x� � �

����x�

�the reason for the �prior� will be exposed in chapter 	
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by polynomials of increasing degrees� the interpolation becomes unstable very
fast as the degree increases� We have chosen to limit ourselves to a second
degree polynomial as we believe this provides an even simpler example�

��� The study of ill�posed problems originates in the work of Hadamard ��� ���
However� it stayed a mathematical curiosity until the sixties� with the work
of Russian mathematicians� Well�posed and ill�posed problems in Hadamards
sense are de�ned e�g� in chapter � of �Badeva and Morozov� ������

��� Tikhonov well�posedness is also de�ned by Badeva and Morozov ������� The
links between Hadamard well�posedness and Tikhonov well�posedness are stud�
ied in Dontchev and Zolezzi �������

��� Badeva and Morozov ������� already cited above� gives a long introduction to
Tikhonov regularisation method� A brief description is also given by Vapnik
�������

��� Hansen ������ explores brie�y the use of di�erent regularisation functionals�
in the context of linear inverse problems� E�g� the use of the ��norm or the
��norm for the regularisation functional� and Backus�Gilbert regularisation�

��� This is a classical example �Charton� ������

��� The ill�posedness of density estimation is mentioned by Vapnik ������ in sec�
tion ������

��� The choice of the appropriate regularisation parameter is a topic explored in
chapter ��

��� Calculations in this section follow those of Bishop ������� although we apply
these derivations directly to the empirical cost� Equation ������ corrects equa�
tion ���� of Bishop ������� Other authors have published similar results� The
inadequacy of neglecting the second order term to make R �fw� a Tikhonov
regulariser has been argued by Grandvalet ������� who gives simple example
where regularisation with ���� � fails to give good results�

���� The distinction between formal and structural regularisation in neural net�
works was introduced by Denker et al� �������

���� The use of weight�decay for improvement of the generalisation error has been a
standard technique for a long time in neural computation �Plaut et al�� ������
It is analysed� e�g� by Krogh and Hertz ������� The use of the ��norm of the
parameters as a regulariser is common in linear regression� under the name
ridge regression� already mentioned�

���� Ljung et al� ������ gives an example of a practical case where regularisation
helps handling non�normalized data� In that case� however� weight�decay is
only used for a few iteration in order to �de�freeze� the data� so this experiment
is not really representative of regularised training�

���� The links between stopped training and regularisation with non�linear models
are still under investigation� In a private communication� V� Morozov men�
tioned that the problem of stopped training and regularisation had been solved
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by mathematicians from the ex�Soviet union� Unfortunately� we have been un�
able to �nd their work in translated form� Ljung et al� ������ addresses the
problem� and Sj$oberg and Ljung ������ also considers the equivalence between
the two methods�

���� The OBD algorithm was suggested by Le Cun et al� ���� �� The OBS algo�
rithm was proposed by Hassibi and Stork ������� Some improvements have
been proposed since� An interesting elaboration is the validation set pruning
methods �OBD and �OBS� proposed by Pedersen et al� �������

���	 The regularisation term discussed in this section has not been studied a lot yet�
It has been proposed to the neural network community by Williams �������
Besides chapter �� further studies can be found in �Goutte and Hansen� ����	
Goutte� ������ The study of the in�uence of di�erent regularisers than the
usual ��norm is also of interest to linear systems� cf� �Hansen� ����� already
cited�
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Hyper�parameters

��� Introduction

We have introduced earlier the use of regularisation in the learning procedure� It
should now be understood that regularisation is most often a necessity to increase
the quality of the results� Even when the unregularised solution is acceptable� it is
likely that some regularisation will produce an improvement in performance�

There does not exist any method giving directly the best value for the regularisation
parameter �� even in the linear case� The topic of this chapter is thus to propose
some methods to estimate the best value� The best � being the one that leads to
the smallest generalisation error� the methods presented and compared here pro�
pose estimators of the generalisation error� This estimation can then be used to
approximate the best regularisation level�

In sections ��� to ��� we present validation�based techniques� They estimate the
generalisation error on the basis of some extra data� In sections ��� to ���� we deal
with algebraic estimates of this error� that do not use any extra data� but rely on a
number of assumptions�

The contribution of this chapter is to present all these techniques and analyse them
on the same ground� We also present some short derivations clarifying the links
between di�erent estimators of generalisation error� as well as a comparison between
them�

During the course of this chapter� the error will be the quadratic di�erence� For
the validation�based methods� it is possible to consider any kind of error without
modi�cation of the method� On the other hand� the algebraic estimates are speci�c
to the quadratic cost� Adapting them to another cost function would require to
derive new expressions for the estimators�

The general setting for this chapter is similar to chapters � and �� A model fw
depending on a set of parameters w is used to estimate the regression of x on y� bw
is obtained by optimising the regularised cost�

C �w� � S �w� � �R �w� �����

��
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where S �w� �
PN

i��

�
y�i� � fw

�
x�i�

���
is the quadratic cost and R �w� is the regu�

larisation functional� weighed by the regularisation level �� Typically� R �w� involves
a sum of absolute or quadratic values of the weights� However� this is not a restric�
tion� and more general terms involving e�g� �rst and second derivatives can be found
in the literature�

The application of the results in this chapter to other regularisation techniques such
as pruning is straightforward�

��� Single validation method

The single validation method is a degenerate case of the cross�validation method
presented later� The data available for learning �i�e� excluding a possible �test set�
on which the �nal performance is checked� is split in two � the training set and
the validation set� The training set is used for training� as can be expected� The
validation set is used to assess the performance of the model for various values of
the hyper�parameter�

The validation set should not be used for training the actual model� i�e� either
identifying the parameter of the model� or calculating a non�parametric estimate�
On the other hand� it is part of the learning procedure� as it guides the choice of
the value of the hyper�parameter that will lead to the �nal model� It di�ers in that
way with the �test set�� which should not be touched at any rate during the entire
learning�

When V data are reserved for validation� the single validation method divides the
available data in three sets�

�� The training set contains data V �� to N � It is used to calculate and optimise
the cost function C�w�� giving an estimate bw of the parameters�

�� The validation set contains data � to V � It is used to assess the generalisation
performance of bw�

�� The test set contains data after N � It is used to assess the �nal performance
of the entire learning procedure�

The validation set provides an estimate of the generalisation error that can be ex�
pressed as�

bGSV �
�

V

VX
k��

�
y�k� � fbw �x�k���� �����

V regulates the trade�o� between training and validation data� The balance between
the size of the training set and the size of the validation set is a matter of personal
judgment� According to the law of great numbers� bGSV is an unbiased estimator of
the generalisation error�

The main drawbacks of the single validation method is that all data are not available
during training� and the results are highly dependent on the data reserved for vali�
dation� This trade�o� is a typical no�win situation� If we want the validation error to
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be a fair estimate� V must be large� and the number of remaining data for training
is correspondingly small� If we want to keep a large number of data for training� the
estimate ����� will be poor�

��� Cross�validation methods

The cross�validation method consists in averaging the e�ect of the choice of a par�
ticular validation set over several such sets of identical size� Theoretically� we would
like to consider all such sets� Unfortunately� the number of validation sets of size V
taken from a total number N of data is CVN� The commendable desire of taking into
account all sets of a given size does not survive combinatorial considerations� As
soon as the validation size is larger than a couple of elements� training is no longer
feasible�

The special case where V � � is still possible� and is treated in section ����

The practical application of cross�validation overcomes the combinatorial limitations
by considering only a subset of disjoint validation sets� Let us split the available data
in Q sets Sj of size V each� such that N � Q�V � For practical reason� we will here
consider that V actually divides N � and that the sets are taken in the order of the
data� set S� contains examples � to V � set S� contains examples V � � to �V � etc�

Q di�erent models �fj are trained leaving out every set Sj in turn� The cross�
validation estimator is the average of the performance of these models on the left�out
subset�

bGCV �
�

N

VX
j��

X
k�Sj

�
fj
�
x�k�

�
� y�k�

��
�����

Note that as we perform an average over a number of di�erent models� each trained
on parts of the available data� we actually obtain an estimator of the average gener�
alisation error� rather than the generalisation error as in the single validation case�

This estimation scheme is guided by the number Q of subsets to leave out� An
equivalent scheme consists in setting the size V of each of the subsets� rather than
their number� In such a case� the cross�validation method is known under the name
leave�V �out cross�validation� or Q�fold cross�validation�

The cross�validation method limits the dependency to the validation data by averag�
ing over several validation sets� It is a factor Q more costly to perform than a single
validation� as Q models have to be estimated� This is much less costly though than
the full cross�validation involving all sets of size V � The choice of Q or V still re�ects
a trade�o�� between available data and learning time� Large values of Q correspond
to small� but numerous validation sets� Training on the remaining data will then be
close to training on the full set� but many trainings are necessary�

The main drawback of this method is that for moderate values of Q� the available
data is reduced in a non�negligible proportion� E�g� for Q � � � a common setting�
only � % of the examples are available during each parameter identi�cation� The
next section addresses the use of a limit case of this cross�validation� where Q � N �
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��� Leave�one�out cross validation

A special case of cross�validation arises when the size of the validation set is only
V � � element� This technique is generally known as leave�one�out cross�validation�
although it sometimes goes under other names�

Let us denote by �fk the model obtained by leaving out example number k� The limit
case of ����� leads to the following estimator�

bGLOO �
�

N

NX
k��

�
�fk
�
x�k�

�
� y�k�

��
�����

Leave�one�out cross validation is still hard to apply as is to models requiring expen�
sive calculation to provide the numerous �fk estimates� In the case of neural networks�
for example� a full calculation of ����� would require to train N di�erent networks�
which is often infeasible�

On the other hand� the computational burden is not as high for other models such
as linear models or non�parametric estimators� In the case of non�parametric regres�
sion� leave�one�out cross�validation is a standard tool for setting the value of the
smoothing parameters� as exempli�ed in sections B�� to B����

In the linear case� simpli�cations arise� Using the same notation as section ���� we
recall that the linear parameter vector leaving example k out is given by�

bwk �
�
Xk

�Xk

���
Xk

�Yk �����

where Xk and Yk are the input and output matrices leaving the k�th example out�

It is convenient to notice that Xk
�Xk � X�X � x�k�x�k�

�
and Xk

�Yk � X�Y �
x�k�y�k�

�
� Using the matrix inversion lemma� we get�

�
Xk

�Xk

���
�
�
X�X

���
�

�
X�X

���
x�k�x�k�

��
X�X

���
�� x�k�

�
�X�X�

��
x�k�

�����

Using ������ the LOO expression ����� simpli�es to the rather straightforward ex�
pression�

bGLOO �
�

N

NX
k��

�
�w�x�k� � y�k�

��
�
�� x�k�

�
�X�X�

��
x�k�

�� �����

where �w is the optimal linear parameter vector� i�e� �w �
�
X�X

���
X�Y� Notice

that the expression ����� stays valid for a regularised linear model� In the case of

ridge regression� one just has to replace
�
X�X

���
with

�
X�X� �IP

���
�

The use of ����� greatly speeds up the evaluation of the leave�one�out error� Indeed�
the straightforward application of ����� requires N model estimations� which boils

down to N matrix inversion� Only one matrix inversion is necessary for
�
X�X

���
�

and the x�dependent terms in the denominator of ����� are the diagonal elements of

X
�
X�X

���
X��
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Unfortunately� there is no such exact expression for non�linear models in general�
and neural networks in particular� An approximation in the same line will be studied
in section ����

��� Against cross validation

Single and cross validation �the validation�based methods� are widely used methods
of assessing the generalisation abilities of a given model� The widespread use of cross�
validation is often justi�ed by the belief that� though computationally expensive� it
gives sound results�in our case� a proper choice of ��

We will try to show here that cross�validation also poses a number of problems that
are not easily addressed� We will �rst focus on the trade�o� between computational
demand and estimation accuracy� then address the topic of the results obtained�

Cross�validation poses a serious computational problem� As noted above� leave�one�
out cross�validation requires to train as many models as there are data� Carrying
out N non�linear regression� even with an e�cient algorithm such as conjugate gra�
dient or Levenberg�Marquardt method� is extremely time�consuming� For simple
models the solution can be obtained faster� making this scheme computationally
viable� However� it is likely in such cases� as we have seen for linear regression in
section ���� that the LOO expression can be turned into a more convenient estimator
such as ������

Single validation� on the other hand� poses a serious reliability problem� The size of
the validation set has to be limited in order to keep a large portion of the training
data available for optimisation� It is easy to conceive that the choice of a di�erent
validation set would lead to a di�erent optimisation solution and� predictably� an�
other assessment of the generalisation error� It is indeed in order to compensate for
the variability of the data that the cross�validation method suggests to average the
assessments made with di�erent validation sets�

Practical application of cross�validation is then subject to an unpleasant trade�o�
between getting noisy estimates and computational cost� Unfortunately� this is not
the only limitation of this method� Recent developments in computational learning
theory have led to the so�called �no free lunch� theorem �Wolpert and Macready�
������ showing that no learning strategy is� on average� better than random guessing�
This result is not so much a drawback as it is a plea for insisting on the assumptions
that make a given algorithm e�cient� The usefulness of a learning strategy lies in a
number of assumptions that have to be ful�lled if any gain is to be expected�

Cross�validation methods are especially problematic in that respect� It is not yet
clear what the underlying assumptions are� and thus in which case one should expect
an e�cient behaviour� The fact that many problems have been successfully tackled
with these techniques suggests that these unknown hypotheses verify in a number
of practical case� However� as long as they have not been identi�ed precisely� there
is no guarantee whatsoever that a new problem will meet these requirements�
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��	 Algebraic estimators of generalisation error

Under the proper set of hypothesis� it is possible to derive asymptotic estimates
of the generalisation error averaged over all possible training sets of size N � in a
manner similar to section ���� The main assumptions on the problem are�

�� The �output� data are corrupted by white stationary noise with zero mean and
variance ��� independent of the input�

�� The model is complete� i�e� there exist a �true� set of parameters ew� such that
few � f �

�� The empirical solution is close to the �true� solution so that a Taylor expansion
can be written�

A simple analytic measure of the generalisation abilities of a �linear� model is the
adjusted residual squared error�

bGAR �
N

N � �P
S � bw� �����

where P is the number of parameters in the model� and N S � bw� is the sum of
residuals� hence the name� This estimator enjoys some asymptotic properties for
linear models� but it is not so impressive when it comes to non�linear models� let
alone regularised models�

With the assumptions above� we use a Taylor expansion of the empirical and ex�
pected costs S �w� and G �w�� after which the calculations are similar to the linear
case in section ���� The derivation basically lead us to derive a link between average
training error �or average generalisation error� and the noise level ��� This results
in Akaikes Final Prediction Error or FPE�

bGFPE �
N � bP
N � bP S � bw� �����

where bP is the estimated e�ective number of parameters �see next section�� This
correction takes into account the fact that regularisation tends to �disable� some
parameters� so not all of them will use up one degree of freedom� We will come back
to the topic of the e�ective number of parameters� including their expression for
several types of regularisers� in section ���� Note that equation ����� is also known
under the name GPE�

By expanding the expression of the inverse regularised Hessian� it is possible to push
derivation further and exhibit the FPE for a Regularised cost or FPER�

bGFPER �
N � bP�

N � � bP� � bP�S � bw� ���� �

We now have two quantities bP� and bP� related to the e�ective number of parameters�
The following section will elaborate on this concept and exhibit the links between
the two quantities and bP mentioned earlier�
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One should also be aware of the fact that the algebraic estimates ����� and ���� �
are theoretically valid for averaged errors� i�e� the training or generalisation error
averaged over the �uctuation of the training set� However� we expect this property
to stay valid as we plug S �w� as the only estimate we have of the average training
error�

��� E
ective number of parameters

The expression of the e�ective number of parameters appears in the derivation of the
estimators above� For a regularised system� let us denote HS and HC the Hessians
of the quadratic and regularised cost �respectively�� These Hessians appear in the
Taylor expansions performed around ew�
In this context� a common expression for the e�ective number of parameters is�

bP � tr
�
HSH

��
C

�
������

For a weight�decay regulariser� equation ���� gives the well�known�expression�

bP 

PX
k��

�k
�k � �

������

where �k are the eigenvalues of HS � and � is the weight�decay coe�cient� Roughly
speaking� a large eigenvalue ��k � �� will contribute � to the parameter count� while
a small eigenvalue ��k � �� will have negligible contribution�

Remarkably� this is not the only expression of the desperately�sought e�ective num�

ber of parameters� Indeed� this expression depends on the derivation of the estimator�
Di�erent derivations are likely to lead to di�erent expressions for bP �

For Laplace regularisation� on the other hand� expression ������ does not lead to any
analytical solution� as the second derivative of the regularisation term is unde�ned in
 � However� this regulariser has a pruning e�ect� The e�ective number of parameters

in this case will then be approximated by the number of parameters that have not
been pruned� bP � card fwk 	�  g ������

In practice� a parameter will be considered pruned not only when it is actually zero�
but also when it is lower than a given threshold� depending on the training algorithm�

In the case of FPER� we have mentioned two quantities bP� and bP�� bP� is de�ned in
the same way as bP in ������� while bP� is de�ned as�

bP� � tr
�
HSH

��
C HSH

��
C

�
������

For weight�decay� we have bP� 
 PX
k��

��k
��k � ���

�

�This expression is easily derived from the eigen�decomposition of HS 
 Q�Q�� with � the
diagonal matrix of the eigenvalues �k� In the same condition�HC 
 Q ��� �I�Q� leading to �������
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It should be noted that when bP� and bP� are close to each other� ���� � reduces
to ������ It is the case for weight�decay when the eigenvalues are well�separated

around �� 	k
	k��


 	�
k

�	k���
� � f � �g�

��� Information criteria

In this section we deal with di�erent but related estimates of the generalisation
error� These estimates rely on maximising some information criterion rather than
minimising the expected prediction error� The information criteria involve the nat�
ural logarithm of the maximum likelihood� According to section ���� the maximum
likelihood ML is linked with the minimum training error by�

� lnML �
N S � bw�
���

� cte ������

Please note that as �� is usually unknown� it will be replaced by an estimator� Recall

e�g� from section ��� that one such estimator is b�� � N S�bw�
N�bP �

One of the �rst estimates introduced was Mallows Cp statistics� which is a particular
case of Akaikes �rst Information Criterion� dubbed AIC� The original de�nition of
AIC is � lnML � �P � In our context� AIC leads to the following estimator of the
generalisation abilities of our model�

bGAIC � S � bw� � � bP
N
b�� ������

where b�� is the estimated variance of the noise and bP is still the e�ective number of

parameters� Taking b�� � N

N�bP S � bw� as mentioned above� ������ reduces to the same

expression as the FPE in section ����

A similar criterion� is Schwarzs Bayesian Criterion� or BIC� Using the same notation�
it leads to the following estimate of generalisation error�

bGBIC � S � bw� � bP lnN

N
b�� ������

Please note however that this criterion is not obtained on the basis of the average
generalisation error� but using the Bayesian approach of the evidence �see chapter ���

One can see by comparing ������ and ������ that BIC leans more towards smaller
models �fewer parameters� as soon as there are at least � examples� Another in�
teresting feature of BIC is that it is a consistent criterion� As a consequence� one
can infer that AIC or Cp do not lead to correct models when N � �� This is
most distressing as both criteria are asymptotic� hence valid in the limit of the large
number of examples� However� it should be noted that in our approach� general�
isation error is indeed the quantity of interest� The fact that AIC would favour
an over�parameterised model is thus not problematic as long as it minimises the
generalisation abilities�
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��� Algebraic estimate of the LOO error

Another approach combines the LOO approach and algebraic estimation� The dif�
ference between the minimum of the quadratic cost bw and each of the minimum of
the one�example�out errors bwk is approximated by doing the usual �rst�order Taylor
expansion around C � bw��
After expanding the LOO generalisation error estimator ����� linearly in ) bwk �bwk � bw� we get the approximation�

bGLOO 
 �

N

NX
k��

�
�fbw �x�k��� y�k�

�� h
� � �r�wfbw �x�k��H��

k rwfbw �x�k��i ������

where Hk is the Hessian of the regularised one�left�out cost� that is�

Hk � HC � �rwfbw �x�k��r�wfbw �x�k��
where we have used the Gauss�Newton approximation of the Hessian� leaving only
gradients of the model� After using the matrix inversion lemma to calculate H��

k �
������ becomes the linear unlearning leave�one�out estimate�

bGLULOO �
�

N

NX
k��

�
�fbw �x"k#� � y�k�

�� � � hk
�� hk

������

This corresponds to doing a Taylor expansion around the full�sample minimum for
each of the LOO samples� hence the name of �linear unlearning��

where hk � �r�wfbw �x�k��H��
C rwfbw �x�k��� Predictably� this estimator involves

the inverse of the Hessian� just like other algebraic estimators� In the linear case�

rwfbw �x�k�� � x�k�
�

and HC � �
�
X�X

�
� leading to hk � x�k�

��
X�X

���
x�k�� No�

tice in these condition the similarity between ������ and the exact expression �����
in the limit of small hk�

��� Comparing the estimators

In this section we establish some links between the estimators of generalisation error
from the above sections�

First let us consider that we use b�� � N S�bw�
N�bP as an estimator of the noise variance�

The use of this estimator in ������ leads to�

bGAIC �

�
� �

� bP
n� bP

�
S � bw� � �

N � bP
N � bP

�
S � bw� � bGFPE ���� �

Let us now consider the expression of the adjusted residual estimator� using the
e�ective number of parameters bP in place of the raw number of parameters P in ������

bGAR �
N

N � � bP S � bw� � �
N � bP
N � bP

��
� � o

�
�

N

��
S � bw� 
 bGFPE ������
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which proves the �rst order equivalence between the adjusted residual estimator
modi�ed with e�ective number of parameters and the FPE �and thus AIC� estimate�

Let us now consider the linear leave�one�out situation� According to ������ the cross�
validation estimate is�

bGLOO �
�

N

NX
k��

��y�k� � fbw �x�k��
�� hk

�A�

������

where hk is the k�th diagonal element of matrix X
�
X�X

���
X�� Approximating

these terms by their average *h � �
N

PN
k�� hk leads to the generalised cross�validation

estimator�

bGGCV �
�

N

NX
k��

��y�k� � fbw �x�k��
�� *h

�A�

�
S � bw��
�� *h

�� ������

Let us now use the well�known �rst�order approximation
�
�� *h

��� 
 � � �*h to
obtain the following approximate expression for GCV�

bGGCV 
 S � bw� � �*hS � bw� ������

This is an approximation to the Cp statistics and AIC� where S � bw� is taken as a

�rst�order approximation of the noise level� and N*h � tr

�
X
�
X�X

���
X�

�
is the

e�ective number of parameters�

We already have pointed out in section ��� the similarity between the linear LOO
and the LULOO estimator ����� Let us also notice that hk plays the role of the P�N
ratio� In that respect� the linear unlearning LOO in ������ can be seen as a �local�
FPE� where the error correction occurs at each individual examples level�

This completes our study of the relationships between the above estimators� We
have represented these links in a schematic way in �gure ����

���� Against algebraic estimators

The use of algebraic estimators in the context of non�linear regularised regression is
of course not free of all worries�

The �rst concern is the number of hypothesis necessary to derive the estimators�
It is common statistical practice to assume that the noise is rather well�behaved as
in section ���� On the other hand� the completeness assumption is only valid to a
certain extent� and for fairly large models� As multi�layered perceptrons are universal
approximators� a neural network model could be considered complete� However� the
situation is not that clear� First it could require many hidden units� and thus a large
number of parameters to have a complete model� Even with an unlimited number
of hidden unit� the network architecture is not necessarily adapted to the system�
This is particularly the case in system identi�cation if either e�g� the set of inputs is
wrong� This can happen when some delays on the input�output are not taken into
account�
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FPER

AR

LOOGCV

AIC

LULOO

FPE
GPE

Figure ���� The relationships between algebraic estimators are represented on
this �gure� The bold line between FPE and AIC represents the especially close
relationship between these two estimators�

Another concern is the fact that these estimators� even when the assumptions are
justi�ed� are asymptotic� In order to be statistically sound� they require a large
number of examples during the learning process� However� as noted above� it is
rarely the case that we have that much data� In practical cases� data are in short
supply� and the accuracy of statistical estimators is thus questionable�

The last concern is the fact that most proper estimators above require the calculation
of the e�ective number of parameters� This is a crucial aspect� for the assessment
of the algorithms computational demand �as illustrated below� as well as for the
accuracy of the result� Equations ���� and ���� are only approximations and it can
be seen from expression ������ for example� that the algebraic estimation is quite
sensitive to variations in bP � especially when the ratio bP�N is not small� Indeed�
� bGFPE

� bP � �N�
N�bP��

���� Comparing cross validation and estimators� resources

In order to compare the resources needed using di�erent techniques for optimising
the regularisation level� let us �rst consider the time taken by the optimisation
algorithm� According to chapter �� the conjugate gradient algorithm is an e�cient
way of performing the optimisation of the regularised cost�

One iteration of conjugate gradient can be performed in O �NP � operations� The
number of iterations needed is problem�dependent� but it is reasonable to consider
that we need an order P of iterations� For a linear problem� as noted in section �����
exact minimisation requires at most P iterations� For a non�linear problem� we recall
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that this is no longer true� the algorithm will need to restart a number of times
before eventually converging� However� there is no reason to believe that this need
to restart is linked to either the number of parameters or the number of examples�
The optimisation of the regularised cost takes an order O �P �N

�
operations�

In the LOO scheme� each term in ����� requires to learn the appropriate modelbfk� meaning that there will be N non�linear optimisation processes necessary� The
generalisation assessment is made just by combining the squared error produced by
each model on the left�out example� which is at most O �PN�� hence negligible� The
overall complexity of the leave�one�out scheme is then N times larger than that of
a simple optimisation� that is�

CLOO � O
�
P �N�

�
������

The linear unlearning scheme �cf� section ���� avoids retraining all the models�
However� the expression of the estimate ������ involves the calculation of the hk
which require the computation of the inverse Hessian information� Using the Gauss�
Newton approximation� the inverse Hessian can be obtained by a recursive method
in O �P �N

�
operations� The remaining calculation for each k is only O �P �

�
so the

overall computation cost of the linear unlearning leave�one�out estimate is�

CLU � O
�
P �N

�
������

For other algebraic estimates� the dominating cost is the estimation of the e�ective
number of parameters� As above� it involves the extraction of the inverse Hessian
information� Indeed� both ������ and ������ require computing the trace of a product
of non�regularised Hessian matrix and inverse of regularised Hessian matrix� In the
same conditions as above �Gauss�Newton approximation�� the dominant cost is the
recursive estimation of the inverse Hessian� i�e� O �P �N

�
operations� Please note

that full multiplication of P �P matrices would require O �P �
�
operation� Only the

trace is necessary� however� bringing the computational cost down to a quadratic
O �P �

�
�

The computational complexity of a learning algorithm based on algebraic estimation
of the generalisation error is then�

CGEN � O
�
NP �

�
������

This complexity is valid for FPE�GPE� FPER� AIC and BIC�

The operation counts presented above in ������� ������ and ������ is valid for one
training step� i�e� optimisation of the regularised cost for a given value of �� and
estimation of the generalisation abilities of the resulting model� A typical learning
process will involve several such evaluations for di�erent values of � in order to �nd
the optimal generalisation level� This can be done by any one�dimensional minimisa�
tion method such as golden search� dichotomy� or Brents method� At any rate� the
number of iterations� and thus the number of di�erent training steps required� de�
pends on the accuracy needed� It is independent of either the number of parameters
or the number of examples�

This last remark validates the estimates given for the full learning scheme� Pre�
dictably� the complexity of the linear unlearning and the other algebraic estimators
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are similar� This is no big surprise if we consider the relationships between these
estimators� exhibited in section ��� �

In the limit of the large number of examples� the LOO method with its quadratic
complexity proves far too expensive to be viable� The other two schemes have only
linear complexity in the number of examples� which is makes them much better
options�

It is unfortunately seldom the case� however� that P is negligible before N � In many
real applications� data tend to be sparse� and both P and N are of the same order�
The computational costs derived in this section show that even then� leave�one�out
cross�validation loses in �op counts compared to the other estimators� It should be
noted however� that in such a case� the reliability of these estimates is questionable�

���� How can I choose the hyper�parameter value

In this chapter we have presented two families of methods to chose the extent of the
regularisation� They rely on estimating the generalisation error� and choosing the
regularisation level that yields the lowest generalisation error�

We insisted on the fact that cross�validation is a computationally expensive method�
leading to rather noisy estimates� Furthermore� the assumption under which this
method is e�cient are not well understood�

On the other hand� the algebraic estimators rely on a number of more visible assump�
tions� Their calculation is much less demanding in terms of computational resource�
However� they are only asymptotic estimators� thus not well�suited to practical cases
when the number of data is limited�

Considering the above� and when it is needed to chose one among these two classes
of methods� we will favour the choice of the algebraic estimate� In the practical
applications presented later in this work� we will adopt this standpoint�

COMMENTS

��� Despite its drawbacks and inaccuracy� the single validation method has been
used extensively and is still widespread� It is sometimes necessary to use it
to compare with older results� e�g� Goutte ������ and Weigend et al� ���� ��
Some studies also explore the way the validation set should be used to yield
maximum e�ciency� e�g� Larsen and Hansen ������	 Larsen et al� ������� or
Kearns ������� However there does not seem to be any consensus yet on the
optimal split ratio�

��� The leave�one�out cross�validation scheme has been named e�g� hold�out method
by Weigend et al� ���� �� It also shares some similarity with the jackknife sta�
tistical procedure� but di�ers in the purpose �see Efron� ������

��� A more precise study of the computational cost is given in section ����� The
�no free lunch� theorem is due to �Wolpert and Macready� ������ This result
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has sparked heated debates in the computational learning community� The
cross�validation procedure in particular has been in the spotlight� and several
e�orts try to study this method in the light of NFL �Zhu and Rohwer� ����	
Goutte� ������

��	 The FPE in the linear case is due to Akaike ������� The generalisation to
regularised neural networks and the associated notion of e�ective number of

parameters was developed e�g� by Moody ������� Ljung et al� ������ propose
a similar estimate� but with an e�ective number of parameters closer to bP�
in ������� The FPER is speci�c to regularised complete models and is due
to Larsen and Hansen ������� Other estimators take into account the bias in
the model� i�e� suppress the completeness assumption �Murata et al�� ����	
Larsen� ������ The counting method for estimating the e�ective number of
parameters for Laplace�L� regularisation is illustrated by Goutte �������

��� Mallows Cp was introduced by Mallows ������� soon followed by Akaikes AIC
in �Akaike� ������ The Bayesian Information Criterion is introduced by Schwartz
������� together with a proof of its asymptotic optimality�

��� Linear unlearning for leave�one�out cross�validation estimates is suggested by Hansen
and Larsen ������� and applied to system identi�cation in a recent communi�
cation by S&rensen et al� �������

��� Apart from these asymptotic considerations� it is interesting to have a opera�
tional comparison of di�erent estimators� A brief empirical comparison between
FPE �with raw parameter number�� GPE and FPER is included at the end
of �Larsen and Hansen� ������ It illustrates the e�ect of the number of e�ective

parameters� and shows that GPE and FPER provide close estimates �in that
case��

���� The universal approximation of neural networks is demonstrated in the clas�
sical �Hornik et al�� ������

���� The computational cost of several optimisation techniques applied to neural
networks has been studied by M&ller ������� The resource asymptotics men�
tionned in this section relate to e�cient optimisation methods such as the
scaled conjugate gradient� This method was originally developed for use with
neural networks models� but has wider application possibilities�
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Lag�space estimation in

time�series modelling

��� Situation and purpose

In this chapter� we focus on an original application of generalisation error and its
estimation� The purpose of this work is to show that generalisation error plays a
crucial role� and that its use can solve interesting and challenging problems�

This chapter deals with time series modelling� From a series of measurements x��
x�� � � �xL� we wish to identify a model bf that allows to predict the future behaviour
of the time series from a number of past measurements�

bxt � bf �xt�i� � xt�i� � � � � � xt�im� �����

Notice that in the general case� the past delays i�� i�� � � � � im need not be consecutive�

The estimation of the model itself is a parametric or non�parametric regression
problem	 a general treatment of these topics is given in chapter � and appendix B�

Before this estimation can be e�ciently performed� however� it is necessary to set
the input and output spaces� The output is well�known� it is the prediction of the
time�series behaviour at time t� i�e� bxt� On the other hand� the input information is
not know a priori� It is of crucial importance to determine this information� i�e� the
proper lag�space� If some relevant delays are missing� the model will be unable to
capture the underlying mapping� and thus fail to provide good prediction� On the
other hand� if irrelevant inputs are included� the input space will have too high a
dimension� From the curse of dimensionality� we expect poor predicting abilities� In
the case of parametric estimation in particular� we will have an over�parameterised
model� and thus poor performance�

��



�� Lag�space estimation in time�series modelling

��� Input selection

It should be understood that the problem of selecting the proper inputs is a central
problem for time series modelling� This is a special case of variable selection� which
in turn can be seen as part of the more general problem of analysing the structure
in the data� However� our problem has a number of special features�

For one� there is an obvious� structural input correlation� More interesting� the search
of the relevant delays ful�lls one of the basic requirements of conventional variable
selection� In such a case� all necessary variables must be available� so that a su�cient
subset of inputs actually exists� This assumption is trivially met� as long as the
system is predictable� because we have the past delays� This argument breaks down
in the case where a long�term delay is needed� that ranges further than the period
actually spanned by the data� However� the relevance of such a case is questionable
as there would be no data to identify the associated parameter�s� anyway�

The path of statistical variable selection will be explored in section ���� and the
solution we propose in section ��� is inspired from these classical techniques�

It should be noted that these methods rely on the use of a model and the identi�ca�
tion of this model for a given lag�space� Another approach seeks this information in
the data itself� in a non�parametric way� It originates in the study of the embedding

dimension of a non�linear dynamical system� The next two sections present this
approach and a practical implementation�

��� The embedding dimension

Assume that we have a deterministic dynamical system described as a smooth map�
ping�

h � M �� M

st ��� st��

where st is a state vector� and M is the phase space� We observe the system and
record a time series x�� x�� � � �xL� We wish to reconstruct the dynamics of the
system by �nding a mapping involving only these outputs� We thus form vectors� of
observed data yt�� � �xt��� xt��� � � � � xt�m��� and model the dynamic by a mapping
on these vectors�

g � IRm �� IRm

yt�� ��� yt

Such a mapping always exists� and the dimension of yt is the embedding dimension�
It means that g is embedded in a space of dimension m� the embedding space�

Once we have found the embedding dimension� the dynamics of the system can be
reconstructed by a mapping from the embedding space onto itself� Furthermore� all

�In this presentation� we consider only consecutive delays for the sake of clarity� However the
same arguments apply to the case where the mapping implements non consecutive delays as in the
rest on the chapter�
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components in yt except the �rst one are well known from the past� Projecting the
mapping g onto its �rst coordinate� we can write�

xt � f �xt��� xt��� � � � � xt�m� �����

We can see that this is the standard time series modelling problem� Therefore�
the search for the embedding dimension is crucial to our problem� as �nding the

embedding dimension is equivalent to �nding the necessary delays for the
ideal mapping�

��� Geometric methods

A number of methods have been proposed in the nonlinear dynamics literature�
All those we are aware of rely on some kind of geometrical argument� based on
the observation that the mapping g �or f� is continuous� Thus close inputs should
correspond to close outputs for the proper mapping�

If the number of delays is insu�cient� close inputs could lead to an arbitrarily large
di�erence in the output� due to the e�ect of the missing delays� On the other hand�
when the number of delays is too high� a large di�erence in input �along the unnec�
essary dimensions� gives close outputs�

This is exempli�ed in �gures ��� and ���� In these �gure� we have generated data
using the H�enon map �

xt � �� ���x�t�� �  ��xt�� �����

In that case� the embedding space is �� and the primary delays that we expect to
select are xt�� and xt��� Each dot on the �gure represents the input and output
distance between two data� i�e �yt��� yt� and �y
��� y
�� The value on the x�axis is
therefore kyt�� � y
��k� while the value on the y�axis is kyt � y
k� When the input
yt�� �resp� y
��� contains only one delay xt�� �resp� x
���� we obtain �gure ����
The data that have very close inputs �left of the �gure� can have arbitrarily distant
outputs�

On the other hand� let us include the �rst two delays in the input vector� xt�� and
xt�� �resp� x
�� and x
���� The situation is now that of �gure ���� for every pair of
data� if the inputs are close� the outputs are necessarily close too�

This example shows clearly that a continuous mapping between input and output
can not be implemented unless we include at least the �rst two delays� Hence the
geometrical approach would select xt�� and xt�� as relevant delays in this case�

��� A practical method

The ��test method uses the geometric idea in a straightforward manner� by estimat�
ing empirically the probability that the output distance is smaller than a given �
when the input distance is smaller that �� If we denote the input distance �along
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Figure ���� When the input contains
only the �rst delay xt��� close inputs can
correspond to arbitrarily distant outputs
�left�� Data are generated with the H�enon
map� each dot corresponds to one input�
output couple�
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Figure ���� When the input contains the
two �rst delays xt�� and xt��� close in�
puts lead to close outputs� Data are gen�
erated with the H�enon map� each dot cor�
responds to one input�output couple�

each coordinate� by d and the output distance by dt� we can write this probability
as P �dt � �jd � ��� or simply P ��j���
For a given input dimension m and a number of candidate delays im� consider the
following sets�

Am ��� � f�j� k� � j 	� k�i � fi�� � � � � img jxj�i � xk�ij � �g �����

Bm ��� �� � f�j� k� � Am ��� � jxj � xkj � �g �����

We can now de�ne the following empirical probabilities� where Nm is the total num�
ber of distinct �j� k� pairs�

Pm ��� �
card �Am ����

Nm
� bP �d � ��

Pm ��� �� �
card �Bm ��� ���

Nm
� bP �dt � ��d � ��

Pm ��j�� �
P ��� ��

P ���
� bP �dt � �jd � ��

In the special case where m �  �no delays�� we set A� ��� � f�j� k� � j 	� kg� such
that Pm ��j�� depends only on �� The estimated probabilities above become quite
noisy when the number of elements in set Am and Bm are small� For this reason� we
estimate the standard deviation of Pm ��j��� Notice that this estimate is the empirical
average of a binomial variable �either a given couple satis�ed the conditions on �
and �� or it does not�� The standard deviation is then estimated easily by�

b�m ��j�� �
s

Pm ��j�� ��� Pm ��j���
card �Am�� �

�����
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This allows us to keep track of cases where the estimation of Pm ��j�� is made on an
insu�cient amount of data�

Generally speaking� Pm ��j�� increases with � �laxer output test�� and when � ap�
proaches  �stricter input condition�� Let us now de�ne by Pm ��� the maximum over
� of Pm ��j��� Pm ��� � max��� Pm ��j��� The dependability index is de�ned as�

�m ��� �
Pm ���� Pm�� ���

�� P� ���
�����

P� ��� represents how much data passes the continuity test when no input information
is available� This dependability index measures how much of the remaining continuity
information is associated with involving input im� This index is then averaged over
� with respect to the probability ��� P� �����

�m �

Z
�m ��� ��� P� ���� d� �����

It is clear that �m ���� and therefore its average� should be positive quantities�
Furthermore� if the system is deterministic� the dependability is zero after a cer�
tain number of inputs� so the sum of averages saturates� If the system is also
noise�free� they sum up to �� For any m greater than the embedding dimension�Pm

j�� �j �
Pm

j�� �m ���� In the presence of noise� this relation is only valid for values
of � that are larger than a given threshold ���

In the examples below� any reference to the embedding dimension refers to results
obtained using this method�

��	 Statistical variable selection

Statistical variable selection �or feature selection� encompasses a number of tech�
niques aimed at choosing a relevant subset of input variables in a regression or a
classi�cation problem� As in the rest of this document� we will limit ourselves to
considerations related to the regression problem� even though most methods dis�
cussed below apply to classi�cation as well� Variable selection can be seen as a part
of the data analysis problem� the selection �or discard� of a variable tells us about
the relevance of the associated measurement to the modelled system�

In a general setting� this is a purely combinatorial problem� given V possible vari�
ables� there is �V possible subsets �including the empty set and the full set� of these
variables� Given a performance measure� such as prediction error� the only optimal
scheme is to test all these subset and choose the one that gives the best performance�
It is easy to see that such an extensive scheme is only viable when the number of vari�
ables is rather low� identifying �V models� when we have more than a few variable�
requires too much computation�

A number of techniques have been devised to overcome this combinatorial limit�
Some of them use an iterative� locally optimal technique to construct an estimate of
the relevant subset in a number of steps� We will refer to them as stepwise selection

methods� not to be confused with stepwise regression� a subset of these methods that
we will address below�
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In forward selection� we start with an empty set of variables� At each step� we select
a candidate variable using a selection criteria� check whether this variable should be
added to the set� and iterate until a given stop condition is reached�

On the contrary� backward elimination methods start with the full set of all input
variables� At each step� the least signi�cant variable is selected according to a selec�

tion criteria� If this variable is irrelevant� it is removed and the process is iterated
until a stop condition is reached�

It is easy to devise examples where the inclusion of a variable causes a previously
included variable to become irrelevant� It thus seems appropriate to consider running
a backward elimination each time a new variable is added by forward selection�
This combination of both approaches is known as stepwise regression in the linear
regression context� even though the name seems rather misleading �forward selection
and backward elimination are themselves stepwise methods��

In all cases� each step is composed of three operation� selecting a variable� check�
ing whether or not it is relevant� and adding�removing it in accordance with its
relevance� The �rst operation can be done with respect to a number of criteria�
e�g� residual or adjusted mean squared error� squared correlation coe�cient R�� es�
timated prediction error or variance thereof� These criteria are among the most
commonly used� but there is a wide range of possible criteria�

A number of pruning schemes have been adapted to the problem of variable selection�
The generally calculate some kind of saliency �see section ����� associated with each
variable� and prune those inputs �i�e� variables� that have the lowest saliency� As
this description indicates� these are typical examples of backward elimination� even
though the criteria involved are rather original in a statistical context�

In the experiments below� we will use a forward selection method that we will refer
to as F �inclusion� Given p already selected variables and the associated fp model� a
variable i is added to the set of p variables if and only if the F �ratio for this variable
exceeds a given level Fin�

Fi �

�B�
PN

k��

�
y�k� � fp

�
x�k�

��� �PN
k��

�
y�k� � fp�i

�
x�k�

���
b��i

�CA � Fin �����

where fp�i is the model including variable i� b��i is an estimate of the noise level

using the adjusted residuals N S�w�
N��p��� as in sections ��� and ��� � Equation ��� is

an generalisation to non�linear models of the classical formula for linear regression�
Given a con�dence level� �� we take Fin � F ��� �� n � p� ���

Let us add that regularisation is a convenient method to deal with the problem of
variable selection� in at least two ways� First usual regularisation constraint such
as weight�decay pull weights towards  � In linear regression� there is a one�on�one
relationship between weights and parameters� The analysis of the magnitude of the
weights gives information on how the corresponding input contribute to the estima�
tion� and thus on its relevance� With non�linear models it is not so easy� but inputs
can be selected nonetheless� Second� a properly chosen regression level with all the

�In the experiments below� the con�dence level will be written in subscript� F���inclusion refers
to the scheme with � 
 �����
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inputs is expected to provide better predictive abilities than a non�regularised model
using a subset of the inputs� Prediction performance is� after all� what we are after�
As appealing as this idea may be� it does not �t within the scope of the present
study�

��� The case of time series

After these general considerations� let us narrow our study down to the case of time
series modelling� As noticed above� this special case �ts in the more general problem
of variable selection� but it has a number of original features�

All possible variables are delays� and are thus available for selection�

On the other hand� the maximum number of delays is not known in advance� i�e� we
do not start with an extensive set�apart from the case where we would start with
all possible delays� hardly a practical suggestion� This feature makes our problem
a rather bad candidate for backward elimination methods� and pruning schemes in
particular�

For the same reason� the optimal� exhaustive method is ill�suited to time series�
Furthermore� it is likely than any non�trivial time series modelling problem would
be computationally too expensive to consider with this method� As an example�
consider that the well�known sunspots benchmark problem� with �� inputs �the
widely accepted standard� would require � �� di�erent model identi�cations�

Both the extensive scheme and backward elimination would become are more attrac�
tive as soon as we have an upper bound on the possible relevant delays� Such a value
can be estimated in a non�parametric fashion� either using the ��test above� or some
cruder� faster method� However� as discussed in section ����� such a non�parametric
estimate is not necessarily useful in the context of parametric modelling�

However� there is a natural ordering in the possible inputs� and it seems intuitively
reasonable to consider candidate delays from the most recent by going further in the
past� This is by no means a guarantee that the resulting scheme is optimal� indeed
our experiments below seem to show that it is not� but not by a wide margin�

��� The use of generalisation

As mentioned in the previous chapters� the ultimate goal in a modelling procedure
is to minimise the generalisation error� For a model fm predicting xt from a set
of past delays i�� i�� � � � im as in ������ we denote by x�t� the vector of past delays
�xt�i� � � � � � xt�im�� The generalisation error or expected risk is de�ned as�

G �fm� �

Z �
xt � fm

�
x�t�

���
p�xt�x

�t�� dx�t�dxt ���� �

Our goal is to produce a model that minimises this risk� Thus� the optimal set
of delays �with respect to generalisation error� will be one that minimises ���� ��
This suggest an alternative criterion to use in conjunction with a stepwise selection
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method�

Accordingly� we propose the following algorithm ���x is the variance of the data��

�� Initialise� d �  	 Gmin � ��x	 no input selected�

�� Model� d � d � �	 add delay t � d to selected inputs	
estimate generalisation error bG for resulting model�

�� Test� if bG is signi�cantly smaller than Gmin�
then keep delay t� d	 Gmin � bG�
Discard otherwise�

�� Iterate� Go to step � until stop condition is reached�

Contrary to the non�parametric methods relying on geometric arguments to estimate
the embedding dimension� this algorithm is model�based and depends on a proper
way of estimating generalisation error� Furthermore� it is a typical forward selection

procedure� The topics of estimating this error and assessing a signi�cant decrease
will be addressed in the next section�

Finally� let us mention that the algorithm requires a stop condition� It can be similar
to those used with a classical variable selection� It can also be some argument based
on an estimated maximum delay� or a clever heuristic� e�g� stopping the algorithm
when a su�cient time frame has been spanned without adding any delay� In the
quasi�periodic data below� it seems reasonable to stop the algorithm when more
than a period has been passed without inclusion�

��� Generalisation estimates and statistical signi�cance

As noted in chapter �� calculating the value of the generalisation error in ���� �
is usually not feasible� We than have to resort to the use of an estimator of this
quantity� Following chapter �� we consider two such estimates�

With leave�one�out cross�validation� the generalisation estimator is calculated by
averaging over all examples the prediction error on each one of them for the model

trained on the rest of the sample� If we have N input�output pair� and f
�t�
m is the

model trained after leaving example t out� the cross�validation score is�

bG �
�

N

NX
t��

�
f �t�m

�
x�t�

�
� xt

��
������

This expression can be generalised easily to the case of v�fold cross�validation�

Algebraic estimators of the average generalisation error are the obvious other choice�
As noted in chapter �� there are a number of di�erent estimators� For the sake of
simplicity� we will here consider the use of the Final Prediction Error using the
e�ective number of parameters� i�e� an expression similar to GPE�

bG �

�
N � bP
N � bP

�
�

N

NX
t��

�
xt � fm

�
x�t�

���
������
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For cross�validation estimators� the generalisation estimate is an average of N terms�
cf� ����� and ������� For algebraic estimators� it can also be written as such an

average� Noting e�t� �
�
xt � fm

�
x�t�

���
� we have bG � �

N

PN
t��

�
N�bP
N�bP � e�t��

We take advantage of this fact by noticing that both estimators can be written as the
empirical average of a statistics� In both cases� the terms under the sum are samples
from an unknown distribution� the mean of which is the estimated generalisation
error� Furthermore� for two models f� and f�� a large number of the data on which
these estimators are based are common� Typically� in two successive steps of the
algorithm in section ���� the model having one more delay will have one less training
example�

Using the common data� the signi�cance of an apparent decrease in generalisation er�
ror can be checked using a paired t�test� This statistical test is used to check whether
two sets of paired data have signi�cantly di�erent mean� It relies on the assumption
that the paired di�erence between the two sets has a Gaussian distribution� and
checks whether the mean of this di�erence is signi�cantly di�erent from  �

For cross�validation� we just check whether the residuals in ������ for the two models�
For algebraic estimators� we use the corrected residuals under the sum of ������� for

two models f� and f�� we test

�
N�bP�
N�bP�

�
e
�t�
� against

�
N�bP�
N�bP�

�
e
�t�
� using the paired

t�test�

��� Experiment �� the H�enon map

The �rst experiments are carried out on a small dynamical mapping from the non�
linear dynamics literature� the H�enon map�

xt � �� ���x�t�� �  ��xt�� ������

With this arti�cial problem� we can generate a fairly large generalisation set of
�    elements� that will hopefully provide a reliable unbiased estimate of the true
generalisation error�

We experiment on both on non�noisy and noisy data� adding a Gaussian noise of
variance ��� �  ��� We use both a linear model and a non�parametric kernel smoother�
with Gaussian kernel� A linear model is obviously a poor choice here considering the
non�linear nature of the system� but it serves quite well the purpose of demonstrating
the workings of our delay selection scheme�

We generate a training set containing �  data� and experiment with four di�erent
selection schemes�

�� A generalisation�based forward selection method using a large� �    elements
validation set distinct from the test set�

�� The delay selection algorithm from section ��� using the FPE as a generali�
sation estimator for the linear model� and the LOO cross�validation estimator
for the kernel smoother�
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H
enon map� No noise Noisy
Linear Kernel Linear Kernel

Large Delays �!� �!� �!� �!�
validation MSE  ����  �    �� �  ����

set Gener�  ����  �    ����  � ��

Generalisation Delays ���!� �!� ����� �!�
based MSE  ����  �    ����  ����

algorithm Gener�  ����  �    �� �  � ��

Delays �!� �!� �!��� �!����!���
���������� 

F���inclusion MSE  ����  �    ����  � ��
Gener�  ����  �    ����  ����

Delays �!� �!�
��test MSE  ����  �    ����  ����

Gener�  ����  �    ����  � ��

Table ���� Results on the noisy and non�noisy H�enon map data� for two models�
a linear model and a non parametric Kernel smoother�

�� The F���inclusion� as explained in section ����

�� The ��test outlined in section ����

In both the noisy and non�noisy case� the ��test selects the physically appropriate
delays� � and �� As noted above� this non�parametric test is independent of the model
�linear or kernel� used for the prediction�

The results are gathered in table ���� For each experiment� we provide three pieces
of information�

Delays The list of delays obtained�

MSE the mean squared error on the training set for the resulting delays�

Gener� the generalisation error� estimated from the �    elements generalisation
set� for the resulting delays�

The full use of the �rst method �generalisation based with a large validation set�
with the kernel smoother model requires the non�parametric estimation of �    
data from �  points� This is computationally too expensive �and requires a large
amount of memory�� so we will limit our validation set to �   data in that case�

���� Discussion of the H�enon map experiment

We can see on table ��� that all three forward selection methods outperform the
��test in our experiments with the linear model� This is of course no surprise as
a linear combination of the �rst two inputs is obviously not su�cient to represent
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the H
enon map accurately� The generalisation�based algorithm �using the FPE as
a generalisation estimate� favours a parsimonious model� with only � inputs on the
non�noisy data� while keeping generalisation abilities at the same level as the other
two parametric methods�

For the Kernel smoother� we notice that in the non�noisy case all method produce
the expected results� The noisy case is more interesting� The F�� inclusion scheme
leads to an extreme case of curse of dimensionality� It selects far too many delays�
leading to a clear problem of over��tting� as shown by the generalisation error� On
the other hand� the training error is suspiciously low� far below the noise level�

The generalisation�based algorithm selects an additional� �unnecessary� delay� but
this leads to an actual decrease in the generalisation error� This is a well known
e�ect of algebraic estimates of the average generalisation error� They tackle the
e�ect of a limited training set size by selecting slightly over�parameterised models�
The important aspect however is that it leads to good generalisation performance�
It is indeed the case here� and we obtain slightly better prediction abilities both on
the training and on the generalisation set�

The large validation set method is supposed to act as a reference for generalisation�
based methods� In the linear case� the selection of the last delay t�� is due to �nite
sample size� The results of the other two do not correspond exactly� but the overall
performance is very similar anyway� For the kernel smoother� it leads to the same
results as our generalisation�based algorithm� which is comforting� However� it is
mostly relevant to the ability of the chosen generalisation estimator �LOO or FPE�
to accurately represent the variations in the actual generalisation error�

This example displays two important features of our generalisation method� First its
ability to add delays that are further in the past when it is necessary� This contrasts
with the non�parametric technique which selects the same delays regardless of the
model� Second� its emphasis on the generalisation error� which is indeed the quantity
of interest when we are interested in e�g� time series prediction� This is also an
interesting contrast with the embedding dimension� which re�ects the �physical�
structure of the data�

���� Experiment �� the Fraser river data

We will now apply our delay selection scheme to a real time series� We have chosen
a freely available dataset� It contains the mean monthly �ow of the Fraser River in
Hope� British Columbia� from march ���� to December ��� � Due to natural cycles�
there is a rough periodicity in the data� with maxima every �� to �� months� It
is partly displayed in �gure ���� There are ��� measurements that we split in two
subsets� ��� �� one third� of the available data for training� and the remaining ���
�� two thirds� as a test set to estimate the generalisation abilities of the resulting
model� This rather bold choice will allow us to analyse the behaviour of di�erent
methods in a case where data is rather scarce�

We will consider the same modelling techniques as above� and add non�linear neural
networks models� In that case� the generalisation error will be estimated as in �������
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Figure ���� Portion of the Fraser river data set� between June ���� and October
����� The rough yearly periodicity in the data appears clearly�

For all models� the signi�cance level in the paired t�test is set to ��% as before�

Performing a ��test on the Fraser river data leads us to select delays �� �� �� �� � and
�� as relevant inputs to our models�

Among the parametric methods mentioned above� the �large validation set� method
is obviously not applicable in this case� there is no such thing as a large validation
set� If there were� we would probably be better o� using part of it for estimating
the models� The disappointing F �inclusion method will also be discarded� so that
we test our delay selection algorithm against the inputs selected by the ��test�

In the linear case� we select �� delays ranging from � to ��� i�e� four �periods� of the
time series� With the kernel smoother� only �� delays are selected� from � to ��� i�e�
only two periods of the data� Finally� the neural network model leads to a selection
of only � parameters� � to �� �� � and �� and ���

The results of these experiments are summarised in �gure ���� Clearly� the best
models are the linear model and the non�linear neural networks� with inputs selected
using the generalisation based algorithm� Only with the kernel smoother does this
algorithm lead to a decrease in performance compared to the embedding dimension
method� In that case� the low performance is due to the inability of the simple kernel
smoother to handle high dimensional inputs� leading to a severe case of the so�called
curse of dimensionality � In upper�right of the plot� the linear model using the �
inputs corresponding to the embedding space displays a possible under��t�

The prediction of the linear and neural network models are presented on �gure ����

���� Discussion and conclusions

The methods based on estimating the embedding dimension yield homogeneous re�
sults and depends only on the data� The speci�cation of a model is actually not even
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Figure ���� Results for the Fraser river time series for three di�erent models�
linear� kernel smoother and neural network� The lower the point� the better the
prediction accuracy� The black square in the upper left shows a bad case of curse�
of�dimensionality� which is typical for kernel smoother in high dimensions�

necessary� A consequence is that it performs badly for non��exible models�

On the other hand� the generalisation based algorithm is model dependent� It has
to be applied for each model and can prove really time�consuming� However� it
optimises directly the quantity of interest� the generalisation error�

In our experiments� the generalisation�based methods tend to select more delays�
further in the past� as long as the �estimated� generalisation error decreases� Typ�
ically� the linear model uses delays over � periods of the time series� and provides
excellent predictive performance� A consequence is that the selected delays have
nothing to do with the actual� �physical� embedding dimension�

The non�parametric ��test needs a large amount of data to provide reliable results�
On the other hand� the generalisation�based method uses the available data to probe
further into the lag�space �e�g� delay �� for the linear model��

The generalisation�based method is a typical forward selection procedure� Perform�
ing a backward elimination step along the same lines on the set of inputs selected for
the Neural Networks� we realise that deleting inputs �� �� � and �� actually leads
to a decrease in �estimated� generalisation error� The resulting neural network has
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Figure ���� Another portion of the Fraser river data set� between August ����
and May ����� Notice the way the linear model overestimates the �rst peak� and
both models seem to smooth secondary peaks�

only � inputs� and  �  ��� �  �  ��� �  �  ��� as training� estimated generalisation
and validation performance �respectively��

COMMENTS

The investigations in this chapter were mainly published as �Goutte� ����b�a��

��� Apart from the ��test presented below� geometrical approaches include those
of Aleksi
c ������ or Savit and Green ������� Molina et al� ������ also uses a
geometrical argument� similar to that used earlier by He and Asada ������ in
the context of non�linear input�output system identi�cation�

��� The ��test presented in this section was developed by Pi and Peterson �������
It was later re�ned to estimate the level of noise in a time series without doing
regression� It is also used for comparison by Molina et al� ������

��	 The topic of variable�feature selection is a very fruitful research �eld in statis�
tics� A good introduction to classical methods is given by Hocking �������
For a neural networks perspective� see Leray ������� Cibas et al� ������ use a
method related to OBD to select variables in a neural network model�

��� This approach has been advocated in �Goutte� ����b� in a coarser form� For
references on cross�validation and algebraic estimators� see chapter ��

��� The use of the paired t�test to check whether two distribution have di�erent
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variance is explained very well by Press et al� ������� The use of this test
to check the signi�cance of a decrease in error is mentioned by Larsen and
Hansen ������� and has been applied to delay selection by Goutte �����a��

��� The H
enon map is a classic example in the non�linear dynamics literature� It
is used for example �and among others� by Aleksi
c ������� Pi and Peterson
������ or Molina et al� ������� already cited�

���� The dataset used in this section is available from statlib� in the datasets

directory� It was �rst used by McLeod �������

References

Aleksi
c� Z� ������� Estimating the embedding dimension� Physica D� ������!����

Cibas� T�� Fogelman Souli
e� F�� Gallinari� P�� and Raudys� S� ������� Variable selec�
tion with Optimal Cell Damage� In Proceedings of ICANN��� pages ���!�� �

Goutte� C� �����a�� Extracting the relevant delays in time series modelling� In Neural
Networks for Signal Processing VII � Proceedings of the 
��� IEEE Workshop�
number VII in NNSP� Piscataway� New Jersey� IEEE�

Goutte� C� �����b�� Lag space estimation in time series modelling� In Proceedings

of ICASSP��� IEEE�

He� X� and Asada� H� ������� A new method for identifying orders of input�output
models for nonlinear dynamic systems� In American Conference on Control� San
Francisco� California�

Hocking� R� R� ������� The analysis and selection of variables in linear regression�
Biometrics� ����!���

Larsen� J� and Hansen� L� K� ������� Empirical generalization assessment of neural
network models� In Girosi� F�� editor� Neural Networks for Signal Processing V

� Proceedings of the 
��� IEEE Workshop� number V in NNSP� pages ��!���
Piscataway� New Jersey� IEEE�

Leray� P� ������� La s
election de variables� Technical report� Laforia�

McLeod� A� I� ������� Diagnostic checking of periodic autoregression models with
application� Journal of Time Series Analysis� ���������!����

Molina� C�� Sampson� N�� Fitzgerald� W� J�� and Niranjan� M� ������� Geometrical
techniques for �nding the embedding dimension of time series� In Neural Networks

for Signal Processing VI � Proceedings of the 
��� IEEE Workshop� number VI
in NNSP� pages ���!���� Piscataway� New Jersey� IEEE�

Pi� H� and Peterson� C� ������� Finding the embedding dimension and variable
dependences in time series� Neural Computation� ������ �!�� �

Press� W� H�� Teukolsky� S� A�� Vetterling� W� T�� and Flannery� B� P� ������� Nu�
merical Recipes in C� Cambridge University Press� �nd edition�

c�C� Goutte ����



�� Lag�space estimation in time�series modelling

Savit� R� and Green� M� ������� Time series and dependent variables� Physica D�
� ������!����

c�C� Goutte ����



�

Bayesian estimation

��� Introduction

This chapter takes a di�erent standpoint to address the problem of learning� We will
here reason only in terms of probability� and make extensive use of the chain rule
known as �Bayes rule��

A fast de�nition of the basics in probability is provided in appendix A for quick
reference� Most of this chapter is a review of the methods of Bayesian learning
applied to our modelling purposes� Some original analyses and comments are also
provided in section ���� ���� and �����

There is a latent rivalry between �Bayesian� and �Orthodox� statistics� It is by no
means our intention to enter this kind of controversy� We are perfectly willing to
accept orthodox as well as unorthodox methods� as long as they are scienti�cally
sound and provide good results when applied to learning tasks� The same disclaimer
applies to the two frameworks presented here� They have been the object of heated
controversy in the past � years in the neural networks community� We will not
take side� but only present both frameworks� with their strong points and their
weaknesses�

In the context of this work� the �Bayesian frameworks� are especially interesting
as the provide some continuous update rules that can be used during regularised
cost minimisation to yield an automatic selection of the regularisation level� Unlike
the methods presented in chapter �� it is not necessary to try several regularisation
levels and perform as many optimisations� The Bayesian framework is the only one
in which training is achieved through a one�pass optimisation procedure�

��



�� Bayesian estimation

��� Bayes� rule

The simple application of the conditional probability de�nition above allows us to
write that for two events A and B� we have�

P �A �B� � P �AjB� P �B� �����

And we also have�
P �B �A� � P �BjA� P �A� �����

As we obviously have P �A �B� � P �B �A�� we get from ����� and ����� the fol�
lowing formula�

P �BjA� � P �AjB� P �B�

P �A�
�����

Bayes rule was supposedly discovered in an unpublished manuscript by Thomas
Bayes in the ��th century� It was rediscovered by Laplace later in the same century�
but it is only in the past decades that Bayesian statistics became a hot topic �in
many ways(��

As we can see� this rule derives from very simple considerations in statistics� It is
also very useful as it allows to combine inferences� Indeed� it is common to introduce
in ����� an additional term C� This term represents the �context�� conditioning all
the probabilities� It also allows to produce several levels of inference� as probabilities
conditioned on C can in turn be calculated using Bayes rule� If we write for example
that P �AjBC� � P�BjAC�P�AjC�

P�BjC� � we can in turn combine this with the result of an

other inference in the form of P �AjC� � P�CjA�P�A�
P�C� �

This formalism is very useful to incorporate new knowledge in our inference� or to
update the results once new information is available�

��� Regression estimation

Let us now link the above with our regression estimation problem� An unknown

system has produced a set of data D �
�
x�i�� y�i�

�
sampled independently� The

model fw is parameterised by a weight vector w�

Our goal of the estimation is to obtain an approximation of the output y� given the
input x of the system� In terms of probability� this means that we are interested in
the predictive distribution�

P �yjx�D� �

Z
P �yjx�w�D� P �wjD� dw �����

This predictive distribution is obtained by integrating over the model parameters
�i�e� over all possible models� the conditional predictive distribution P �yjx�w�D�
given by the error model� If the noise is assumed to be Gaussian with �� variance�
for example� we have�

P �yjx�w�D� �
�p
����

exp

�
�ky � fw �x�k�

���

�
�����
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Bayesian inference on the parameters ��

where � is assumed known� If it is not the case� the conditional predictive distribution
is obtained by integrating ����� over the posterior noise distribution P ��jD�� This
calculation involves Bayes rule again and is similar to the treatment of the hyper�
parameter that we will address later�

Knowledge of the predictive distribution allows to estimate the optimal output by�
This can be done for example by�

by �

Z
yP �yjx�D� dy �����

which is the average of y�

The predictive distribution ����� involves the conditional predictive distribution� as
well as the posterior weight distribution P �wjD�� In order to obtain this value� we
will use Bayesian inference� and Bayes rule�

��� Bayesian inference on the parameters

We will now switch our interest from the distribution of the output to the distribution
of the weights� The natural thing for estimating P �wjD� is to use Bayes rule to infer
the posterior distribution of the weights�

P �wjD� �
P �Djw� P �w�

P �D�
�����

Now the term P �Djw� is of course the likelihood of the model that we recall from
equation ������

P �Djw� �
NY
i��

P
�
y�i�jx�i�� w

�
�����

where P
�
y�i�jx�i�� w

�
is the likelihood of example i� This equation results directly

from the independence assumption� In the case of a Gaussian assumption on the
output noise� we get exactly equation ������

P �Djw� �
�
����

��N
�
exp

�
� N

���
S�w�

�
�����

The second term is the prior distribution on the weights� This distribution is pa�
rameterised by the hyper�parameter �� The prior on the weights becomes P �wj���
which is linked with P �w� by�

P �w� �

Z
P �wj�� P ��� d� ���� �

P ��� is the prior on the hyper�parameter� usually a non�informative prior � The
setting of such priors will be discussed in section ��� � In some cases� as we will
see in section ���� it is extremely easy to calculate the exact weight prior P �w� by
performing the integration of ���� ��
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�� Bayesian estimation

There remains a problematic issue� however� as we do not have the expression of
P �D�� the denominator of ������ It can be obtained by integrating over the weights
by�

P �D� �

Z
P �Djw� P �w� dw ������

The two quantities involved are the likelihood and the weight prior� which we have
already tackled� Unfortunately� even though the expression of both probabilities are
known� the integral is intractable even for simple cases�

The intractability of P �D� also deprives us of an attractive estimate of the model
parameters� Indeed� given the posterior distribution P �wjD�� we could compute a
number of statistics on the parameters� For example� given a quadratic loss function
on the parameters� the best estimate would be�

bw �

Z
wP �wjD� dw ������

As ����� can not be calculated exactly� neither the optimal Bayesian regression esti�
mate by� nor the best set of parameters can be derived� Numerical integration could
tackle this problem� However� several levels of integration are needed� so this method
is not viable� Another solution evoked later is to rely on the mode of the distribution
rather than on the mean�

Not surprisingly� Bayesian inference applied to our learning problem does not give
any simple answer� It will be necessary to use some approximations to escape the
deadlock� This is the purpose of section ��� and ����

��� Prior on the weights and regularisation

Let us now leave the calculations to focus on the links between the above derivations
and the regularised regression addressed in the previous chapters�

The idea of a prior on the parameters does not mean that we have to guess the
values of the weights in order to be able to actually calculate them� Rather� the
prior represents the state of our knowledge on a given quantity� If we have no reason
to favour a particular value� we will use a uniform prior� This will typically be
the case for the bias parameters in a neural network� Indeed� we have shown in
section ���� that a linear transformation of the input �resp� output� values leads to
a linear transformation of the input �resp� output� biases� There is thus no reason
why a given value should a priori �i�e� before seeing the data� be preferred�

As for the other parameters of a neural network model� the fact that small weights
should be privileged and analytical convenience led to the choice of a Gaussian prior �

P �wj�� �
�
�

�

�P
�

exp
�
�� kwk��

�
������

Other priors can be used� In particular� if we argue that what matters is the absolute
value of the weights rather than their mean and variance� the maximum entropy
distribution is a Laplace prior �

P �wj�� �
�
�

�

�P
exp ��� jwj� ������
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The evidence framework ��

The idea here is to introduce our prior belief on the weight distribution� Hopefully� it
will guide the learning procedure towards a solution in accordance with these beliefs�
Now replace �prior belief� by �constraint� and �guides� by �constrains�� and the
resulting scheme sounds very much like regularisation� Let us write the posterior
distribution of the weight knowing the hyper�parameter using Bayes rule�

P �wjD� �� � P �Djw� P �wj��
P �Dj�� ������

Taking the minus logarithm of ������� we have�

� lnP �wjD� �� � � lnP �Djw�� lnP �wj�� � cte ������

We know since section ����� that there is a link between the log�likelihood and
the empirical risk� In the Gaussian case� � lnP �Djw� � N

��S �w� � cte� As for the
log�prior� in both cases above� it can be written as � lnP �wj�� � �R �w� � cte�
Rewriting ������� we have�

� lnP �wjD� �� � S �w� �
����

N
R �w� � cte ������

Up to an irrelevant constant�� this is proportional to the expression of the regularised
cost� such as in equation ������ for example�

Minimising the regularised cost will thus lead us to the maximum posterior solution�
Furthermore� we see that this links the regularisation functionals used earlier to
actual priors on the weight distribution� This clari�es the name of �Laplace prior�
mentioned in connection with the regulariser used in section �����

Furthermore� as we shall see in the following sections� this link allows us to use
the results of the Bayesian estimation framework to provide means of setting the
regularisation parameter in a regularised cost minimisation procedure�

��	 The evidence framework

In order to avoid the intractability of the direct calculation of the posterior weight
distribution� it is possible to consider estimating P �wjD� by integrating over ��

P �wjD� �

Z
P �wj��D� P ��jD� d� ������

where P ��jD� is called the evidence� and P �wj��D� can be obtained using Bayes
rule like in �������

The evidence procedure considers that probability P ��jD� is sharply peaked about
its maximum b�� In that condition� the integral ������ can be collapsed as if P ��jD�
was a Dirac distribution � ��� b���

P �wjD� 
 P �wjD� b�� ������

�because independent of w�
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�� Bayesian estimation

According to ������� this leads to�

P �wjD� � P �Djw� P �wjb�� ���� �

Following the remarks in the last section� we notice that �nding the maximum poste�
rior weight is equivalent to a regularised cost minimisation� where the regularisation
parameter is linked to the value b� maximising the evidence�

��� Bayesian inference on the hyper�parameter

The crucial step in the evidence procedure is to �nd b�� the value of the hyper�
parameter that maximises the evidence P ��jD��

The evidence can be found using Bayes rule again�

P ��jD� �
P �Dj�� P ���

P �D�
� P �Dj�� P ��� ������

The evidence is proportional to the product of the likelihood of the hyper�parameter
and the prior on the hyper�parameter� We assume a �at prior on ln�� since � is a
scale parameter on which we have no a priori information� The change from � to
ln� does not in�uence the calculation of the likelihood� as conditioning on � or ln�
is similar�

It should be noted that in some cases� as the likelihood �and not the posterior� is
maximised� the likelihood itself has been labeled the �evidence�� This abuse is very
acceptable in this case� as the �at prior over ln� means that one is equivalent to
the other with respect to maximisation�

The likelihood�evidence is estimated by integrating the likelihood of the weights
over the parameters�

P �Dj�� �
Z

P �Djw� P �wj�� dw ������

Another approximation is involved here as we recall that the integrand is propor�
tional to the regularised cost �cf� section ����� Using the quadratic approximation of
this cost in the minimum bw� we recall that C �w� � C � bw� � �

� �w � bw��H �w � bw��
whereH is the Hessian as usual� Equation ������ then turns into a tractable Gaussian
integral�

P �Dj�� �
Z

exp ���C � bw��
ZDZW

exp

�
��

�
�w � bw�� �H �w � bw�� dw ������

where � comes from the fact that the term in the exponential is proportional to our
previous de�nition of the regularised cost� typically involving the average squared
error� In that case� � � N

�� � The normalizing terms ZD and ZW depend on the
normalization of the likelihood� and the normalization of the prior� respectively�

For a Gaussian likelihood� the normalization is ZD �
�
����

�N
� � As for the prior�

if it is a Gaussian distribution� it is normalized by ZW � �����
bP
� � whereas for

a Laplace distribution� the normalization constant is ZW � �����
bP � according to
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equations ������ and ������� It should be noted that bP here corresponds to the
number of parameters with the associated prior� It is not necessarily the total number
of weights� Indeed� as noted above �cf� section ����� we might want to use a �at prior
over the bias� in which case the value of bP has to be adapted consequently�

Integrating the Gaussian integral ������� and taking the minus�log of the result� we
get the log�likelihood�

� lnP �Dj�� � lnZD � lnZW �
NS � bw�

��
� �R � bw� � �

�
lndet �H ������

The expression of ZW � R �w� and H depend on the prior we use� so the expression
of the log�likelihood� and hence that of the maximum b� is prior�dependent�

The basic evidence procedure is there� however� With a �rst setting of �� we minimise
the regularised cost to obtain bw� The quadratic approximation around bw leads to a
calculation of the evidence� the maximum of which gives a new estimate for �� In
the case of a Gaussian weight likelihood of known variance �� and a Laplace prior
on weights� the update formula is�

b� �
bP

R � bw� ������

In terms of regularised cost minimisation� the evidence reduces to a continuous

update of the regularisation parameter � by b� � �� bP
NR�bw� �

If the noise variance is not known� it too can be treated as a hyper�parameter� e�g�
� � �

�� � It can be estimated by maximising the evidence with respect to �� leading
to the following update formula for the regularisation parameter�

b� �
bP S � bw�

�N � P �R � bw� � ������

Notice the use of bP in the numerator� and P in the denominator�

Once found� the maximum evidence hyper�parameter can be used to obtain regres�
sion estimates by integrating over the weights and combining ����� with the evidence
approximation ������� by �

Z
fw �x� P �wjb��D� dw ������

��� Bayesian criticism of the evidence framework

The evidence framework is an attractive method� It shares some very direct similar�
ities with straight regularised regression� in the way that it tries to infer the optimal
hyper�parameter�regularisation level�

Furthermore� the evidence is a seductive quantity� allowing to perform several levels
of Bayesian inference� In a �rst level� for a given model� b� is chosen by maximising
the evidence P �Dj��� On a higher level� among a number of models� the best onecM is also chosen by maximising the evidence of the model P �DjMl��
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� Bayesian estimation

This leads us to consider one of the critics against this framework� As noted above�
the evidence is often taken as the likelihood of the hyper�parameter or the model�
Maximising the evidence is then nothing more than �nding the maximum likelihood
solution� hardly a Bayesian ideal�

Another cause for worries is that the evidence framework relies on a number of
assumptions in the course of the calculation� The evidence approximation ������� and
the Gaussian assumption ������� The Gaussian assumption can be rather poor when
the posterior weight distribution is not Gaussian� e�g� when it has a sharp mode away
from the maximum likelihood� However� it is possible to e�ectively integrate ������
using e�g� the Metropolis algorithm or better� the Hybrid Monte Carlo method�

We will thus address mainly the problem of the �rst approximation� Let us as�
sume that we have a Gaussian likelihood P �Djw� and a Gaussian distribution for

the weights conditioned on the hyper�parameter P �wj�� �
q

�
� exp

�
�� kwk�

�
� Inte�

grating this distribution over the hyper�parameter in a manner similar as section ���
later� we get the prior on the weights P �w�� This integration is done with a non�
informative prior proportional to ���� leading to�

P �w� � �

kwk ������

Now consider the expression of the posterior weight distribution ����� given by Bayes
rule� It is proportional to the product of the likelihood� a Gaussian� and the prior
weight distribution� which� as ������ shows well� is nowhere near a Gaussian� The
posterior distribution will thus not be Gaussian� This contradicts the evidence ap�
proximation ������� Indeed� according to Bayes rule in ������� the evidence approxi�
mation for the posterior� P �wjD� b��� is a product of two Gaussian distributions� and
thus Gaussian�

A simple di�erence can of course not been interpreted as a �agrant failure of the
method� It has been argued that even though the distributions are not similar� the
evidence approximation puts �most of the mass in the right place�� It is beyond our
scope to investigate thoroughly the basis of this claim� However� we will mention
that sources cited in the COMMENTS section have argued against it� and proposed
upper and lower bounds of the evidence error� i�e� the di�erence between e�g� the
estimate given by the evidence in ������ and the Bayesian estimate obtained using
the correct posterior distribution P �wjD� in the same conditions�

��� The MAP framework

Let us now go back to equation ����� in section ���� It gives the posterior distribution
of the parameters� We have noted that the likelihood is a well known quantity�
and that the prior on the weights can be estimated by integrating over the hyper�
parameter�

P �w� �

Z
P �wj�� P ��� d� ������

Let us consider a neural network model with a Laplace prior on the weights such as
P �wj�� �

��
�

��
exp ��� jwj�� As � is a scale parameter � we will use the improper�
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non�informative prior P ��� � ��� �cf� section ��� � Integrating ������� we obtain�

P �w� �

Z ��

�

�
�

�

�bP
exp ��� jwj� �

�
d� �

� bP � �
�
(

�bP R �w�
bP ���� �

where R �w� is the corresponding regularisation functional� i�e�
P

j jwj j in that case�

and bP the number of regularised parameters as in section ����

For a Gaussian prior� the derivation is slightly di�erent� but we still get P �w� �
R �w�

bP �
The likelihood P �Djw� is known when the noise level �� is known� If it is not so� it
can be obtained in the same way� With a Gaussian assumption on the noise�

P �Djw� �
Z ��

�

�
�

�

�N
�

exp ���N S �w��
�

�
d� �

,
�
N
�

�
��

N
�

�N S �w���
N
� ������

As noticed in section ���� the full calculation of the posterior weight distribution
P �wjD� is intractable� However� from ������ we see that P �wjD� � P �Djw� P �w��
so we can consider maximising the posterior� The search for this maximum gives its
name to the method� Maximum A Posteriori� We do estimate the model parameters
by� bwMAP � argmax

w
P �wjD� ������

Let us consider the minus�logarithm of the posterior� that we infer from ���� �
and �������

� lnP �wjD� �
N

�
lnS �w� � bPR �w� � cte ������

where the constant contains a sum of terms independent of w� Maximising the poste�
rior with respect to w is equivalent to minimising ������� Derivating this expression�
we get�

r �� lnP �wjD�� �
N

�S �w�
rS �w� �

bP
R �w�

rR �w� ������

Considering the MAP parameter estimate bw where this derivative is zero results in
the following expression�

rS � bw� � � bP S � bw�
N R � bw�rR � bw� �  ������

Note that ������ is the same as the gradient of the regularised cost ������ where we
have set the regularisation parameter to�

b� � � bP S � bw�
N R � bw� ������

Once again� the Bayesian framework provides us with an update rule for the reg�
ularisation parameter� The MAP learning can thus be performed by minimising
the regularised cost with a continuous update of the regularisation parameter given
by �������
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��� Non�informative prior

The use of a non�informative prior is crucial to re�ect our lack of knowledge about a
given quantity� It is understood that the prior should serve the purpose of biasing the
solution with some of the a priori information we have on it� However� we wouldnt
want this prior to introduce some information we do not have on the problem(

The intuitive choice for a non�informative prior on � would be to chose a uniform
distribution on a given range "a	 b#� Indeed� we have no reason to privilege one value of
parameter � more than the other� Contrary to intuitive belief� depending on the type
of parameter� the uniform prior does introduce� against our will� some �unwanted�
information in the problem�

This is clear if we consider what happens in a change of variable� Indeed� if the param�
eter is a scale parameter � we have no information on the parameter� but identically�
we have no information on its inverse� Consider the case of the hyper�parameter on
the weight distribution above� Whether we write the distribution exp ���R �w�� or

exp
�
�R�w�

�

�
should not in�uence the result�

Let us now take an arbitrary distribution P �Xj��� that we wish to integrate over
our parameter on the range "a	 b#�

P �X� �

Z b

a
P �Xj�� P ��� d� ������

With a uniform prior� we simply get P �Xj "a	 b#�� If P �Xj�� is in turn uniform with
value � this amounts to P �X� �  �b� a��

� being a scale parameter� it is equivalent to write

ProbX � int
��a
��bP �Xj���� P ��� d�� Using the same uniform prior� according to the

above� and performing the change of variable � � ���� we obtain�

P �X� �

Z b

a
P �Xj�� �

��
d� ������

It is clear that ������ and ������ will give di�erent results� Using the same uniform

distribution� the result will be P �X� � �
�

�
b��a�
a�b�

�
�

In order for the ��x change of variable to have no e�ect on the use of the prior� we
see that we need to have ��P �a� � P ������ The obvious solution in that case is�

P ��� �
�

�
������

This justi�es the use of the non�informative prior in section ���� for all scale param�
eters�

Note that there is no prior that will be invariant under any variable change� so the
type of parameter �i�e� type of change invariance� we desire is of prime importance�

As noted above� this prior is improper� as it does not integrate to one on " 	��"
�which contradict our de�nition of a probability� de�nition A���� On any more re�
stricted interval "a	 b#� it is possible to normalize� Integration can e�g� be performed
on "��a	 a#� with a� ���
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���� Criticism of the MAP framework

The main criticism about the MAP framework is that it does not estimate what
really matters� Indeed� �nding the maximum a posteriori parameters according
to ������ corresponds to getting the mode bw of distribution P �wjD��

Typically� the estimate in x will then be given by using the model with bw�
by �

Z
fw �x� P �wjD� dw 
 fbw �x� ���� �

However� this contradicts the real Bayesian method� in which we would obtain by
by integrating over the posterior weight distribution� The approximation might be
correct if the resulting weight bw indeed represents the posterior distribution well�
���� � is in spirit very close to the evidence approximation ������� Indeed� it corre�
sponds to collapsing the integral over the weights in bw�
Accordingly� this framework functions in the opposite way as the evidence frame�
work� In the Evidence framework� we optimise the hyper�parameter value in order
to integrate over the parameters using an approximate posterior distribution� In
the MAP method� on the contrary� one integrates over the hyper�parameters� then
optimises the weight �i�e� takes the mode instead of the expectation��

It is a criticism of the MAP method to notice that when faced to a choice of inte�
grating over some parameters and optimising others� it is advisable� for the sake of
accuracy� to integrate over as many parameters as possible� Typically� there are a
large number of parameters� and possibly a handful of hyper�parameters� In the case
of neural networks� for example� one hyper�parameter typically handles the weight
of one layer� or of one input� The number of hyper�parameters will then be low com�
pared to the number of parameters� and it sound intuitively reasonable to optimise
this handful of parameters and integrate over the weights� rather than the opposite�

Finally� it has been argued that in the case where a large number of parameters are
ill�determined� the MAP method leads to over�regularisation� and fails to produce
sensible inference �cf� the COMMENTS section�� However� we are not aware of any
convincing example evidencing this behaviour�

���� Choice of a Bayesian framework

The arguments for or against each framework are of course interesting� but they are
not necessarily relevant to the practitioner� Indeed� the evidence framework might
rely on a maximum likelihood estimation of the hyper�parameter� and rely on some
possibly wild assumptions� and the MAP method could very well fail to grasp where
the actual mass of the posterior is�

On a more philosophical basis� let us quote an extract from Vapnik �������

The only �but signi�cant� shortcoming of the Bayesian approach is that it
is restricted to the case where the set of functions of the learning machine
coincides with the set of problems that the machine has to solve� "� � � #
For example it cannot be applied to the problem of approximation of
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the regression function by polynomials if the regression function is not
polynomial� since the a priori probability P ��� for any function from
the admissible set of polynomials to be the regression is equal to zero�

On a practical basis though� many applications have shown that the evidence frame�
work is susceptible to provide good results� The proof of that is the victory of D�
MacKay in a time�series prediction contest� as well as the celebrated application of
the evidence in Thodberg �������

The MAP framework on the other hand� appears to us to have some theoretical
advantage� It was also used successful in some real life application� such as Williams
�������

It is not our purpose to judge one method or the other� Even if we did on a theoretical
basis� this would not necessarily have consequences on the practical application to
neural networks� However� it should be noted that one strength of the Bayesian
method�s� is that it allows to express the assumption on a problem very clearly�

Perhaps the main asset of Bayesian methods is the availability of a continuous update
rule� This allows the design of a learning procedure that requires only one optimi�
sation� It has been reported that the continuous update rules� ������ and �������
pose some convergence problems� However� it is our experience that when carefully
applied they prove very e�cient� The features to watch are the di�erent weight
categories �typically input and output weights will be two di�erent regularisation
classes�� and the count of the number bP of regularised parameters� especially when
pruning arises�

We use the Bayesian setting of the regularisation parameter to obtain some of the
results in the two last chapters� In chapter �� we carry out full Bayesian calculation
on a simple example� using both frameworks�

COMMENTS

��� The philosophical as well as practical di�erences between the Bayesian and
the frequentist �or Fisherian� approaches to statistics is well illustrated in
e�g� �Efron� ������ and the comments and references therein�

��� For a rather general �if partial� presentation of Bayesian reasoning� see Jaynes
������ and enclosed references� Most textbooks on statistics and probability
also present the Bayes inference rule�

��� The use of the evidence for neural networks was pioneered by MacKay �����a�b��
See also Thodberg �������
Neal ������ advocates the use of a hybrid Monte Carlo method to perform
the integration over the parameters� rather than the use of the evidence pro�
cedure� The computational cost of the method is rather high� but the results
are reported very close to the Bayesian ideal�

��� On criticism of the evidence procedure� few sources can match Wolpert ������
������ Many results including the bounds on the evidence error and su�ciency
conditions for the evidence to work can be found there�
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��� An application of the MAP framework using a Laplace prior weight distribu�
tion is given by Williams ������� We have used the same prior� and demon�
strated its e�ect on a toy problem in chapter ��

��� It is surprisingly hard to �nd a source that provides a convincing treatment
of the non�informative prior� In the context of inverse problems� let us men�
tion �Scales and Smith� ����� page ����

���� Several authors have argued against the use of the MAP method� A simple
example of incorrect inference produced by MAP is presented by MacKay
������� although it is not clear whether it is really relevant� Thodberg ������
also brie�y argues that one should �integrate over as many parameters as
possible��

���� The quote from V� Vapnik is in section ������ of �Vapnik� ������
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The e�ect of a pruning prior

	�� Introduction

The aim of this chapter is two�fold�

� to provide an example of the application of statistical learning on a very simple
problem� This very simple case allows us to gain insight into the way di�erent
learning schemes address the problem and work towards the same goal�

� to display the e�ect of an regularisation alternative to the usual �weight�decay�
on this problem� and on real life time�series modelling and system identi�ca�
tion�

The �rst part is developed in sections ��� to ����� this part is quite long as we have
tried to go into the details of the derivations� The second part is the body of sections
���� to �����

	�� The parameter location problem

We address the problem of estimating the value of a quantity based on noisy mea�
surements of it� The target value will be noted ew and called the teacher parameter �
or teacher weight � by analogy with neural network parameters�

A number of noisy examples are available� of the form�

y�k� � ew � ��k� k � �� � � � � N �����

The noise is taken with  mean and known variance ��� The training set D is here

the set of all the available examples��
n
y�k�� k � � � � � N

o
�

The real system is thus y � ew � �� and we try to model it by �nding an estimate bw
of the teacher weight� This estimate will be called the student parameter �

�In this problem� there is no input�output relationship�

��



�� The e�ect of a pruning prior

This simple problem should not lead the reader to think that these derivations are
trivial� On the contrary� we will demonstrate that even in such a simple case� some
important di�erences arise between di�erent learning methods� Indeed� the results
obtained are far from being obvious�

	�� Maximum likelihood solution

The maximum likelihood solution depends on the shape of the noise �� We will
address the two simple cases of Gaussian and Laplacian noise� In the case of Gaussian
noise� the likelihood of the student parameter w associated with the training set D
is given by�

P �Djw� �
NY
k��

exp

�
��y	k
�w��

��

�
p
����

�����

Maximising ����� with respect to w leads to the maximum likelihood �ML� estimator�
This estimator is� as we know� the empirical mean�

wML �
�

N

NX
k��

y�k� � y �����

In the case of Laplacian noise� the likelihood of parameter w associated with the
training set D is given by�

P �Djw� �
NY
k��

exp

�
�jy

	k
�wj
�

�
�

�����

where  is the mean absolute value� which relates to �� as �� � ��� Maximising �����
with respect to w leads to the maximum likelihood estimator in the case of Laplacian
noise� the median�

wML� � med
�
y�k�

�
�����

In the following� we will make the assumption that the noise � on the teacher pa�
rameter is Gaussian� This does not mean that it actually is� only that we believe it
to be so�

	�� Regularised solution

Let us now apply a least mean square method to our simple problem� The quadratic
cost is given by the average square distance between the student parameter and the
data�

S �w� �
�

N

NX
k��

�
y�k� � w

��
� �y � w�� � ��y �����
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where ��y is the empirical variance� i�e�
�
y�k� � y

��
� The value of w that minimises �����

is the empirical mean� i�e� the maximum likelihood estimator� The quality of this
estimation is assessed by the expected risk� or generalisation error�

G �w� �

Z ��

��
� ew � �� w�� p ��� d� � � ew � w�� � �� �����

One can see in ����� a very simple version of the bias�variance decomposition� ��

is the irreducible noise level� � ew � w�� is the variance of the estimate �due to the
observational noise�� The bias does not exist here as there is no modelling error� our
one�parameter model is� by construction� perfect for the task at hand�

The regularised cost is obtained by adding a weighted constraint to the quadratic
cost�

C �w� � S �w� � �R �w� �����

where R�w� can take di�erent forms� The most common one is a quadratic term�
which relates to ridge regression in the case of linear models and weight decay in
the case of neural networks� R�w� is then the L� norm of the parameter vector�
i�e� R�w� � w�� As will be seen later� this is equivalent to having a Gaussian prior

on the weights� Beside the quadratic regularisation� we will here consider the case
of another type of regularisation� introduced in section ����� In that case� recall
that R�w� is the L� norm of the parameter vector� R�w� � jwj� This relates to the
use of a Laplace prior on the weights and will sometimes be referred to as Laplace
regularisation�

Minimising ����� with respect to w in the case of the weight decay leads to�

wG �
�

� � �
wML �����

The index G refers to the use of a Gaussian prior on weights �weight�decay��

As we can see� the solution is proportional to the maximum likelihood estimator�
When this estimator is small� it is likely that the teacher parameter itself is small�
The regularised estimate is then slightly biased towards  � On the other hand� for
high values of the teacher parameter� the maximum likelihood will be high� and �����
can then be highly biased�

In the case of the Laplace regularisation� minimising ����� with respect to w leads
to the regularised solution�

wL �

� �
�� 	

�jwMLj
�
wML jwMLj � ���

 jwMLj � ���
���� �

The index L now refers to the use of Laplace prior�

The behaviour of this estimate is entirely di�erent� For small values of the maximum
likelihood� it leads to pruning of the parameter� For higher values� the regularisation
introduces a constant bias� This estimator is thus never highly biased� contrary
to ������

Predictably� both estimates depend on the regularisation parameter �� This param�
eter has to be set using one of the methods discussed in chapters � and �� We will
now proceed with the presentation of the generalisation method and we will later
present the derivation in the case of the Bayesian frameworks�
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� The e�ect of a pruning prior

	�� Generalisation method

The idea behind the generalisation method is to average the generalisation error
over all possible training sets� and choose the value of the regularisation parameter
that leads to a minimum of this average� Let us �rst consider the unregularised case�
We recall ����� and ������ plug the maximum likelihood solution estimator y and
integrate over its distribution�

S �wML� � ��y �� hS �wML�i �
�
�� �

N

�
�� ������

G �wML� � � ew � y�� �� hG �wML�i �
�
� �

�

N

�
�� ������

as y is normally distributed around ew with variance ���N � and h�i is the average of
a quantity over all possible training sets of size N �

In the case of weight decay� we seek the expression of wGG� the solution of the
Generalisation method with a Gaussian prior� Recall that wML � N � ew� ���N��
Hence we have� wG � N

�
�

��	
ew� �

N���	��
��
�
� According to ������ the average gener�

alisation error is hG �wG�i �
D
� ew � wGG�

�
E
� ��� which leads to�

hG �wG�i �
�

� ew
� � �

��
�

�
� �

�

N�� � ���

�
�� ������

The optimal value of � corresponds the the minimum of ������� It is reached for�

� �
��

N ew�
������

Remember that in our simple problem� � is known and does not have to be estimated
from the data� Inserting this expression in ����� leads to the �optimal� estimator
with respect to the average generalisation error�

wGG �
ew�ew� � ���N

wML ������

The problem with this estimator is that it involves the teacher parameter� ew which
by essence is unknown� A natural solution is to use an estimator to �ll in the role� Re�
placing ew with wML leads to the �rst generalisation method estimator for a Gaussian
prior�

wGG� �
w�
ML

w�
ML � ���N

������

Another possibility is to insert the estimator itself in place of ew� leading to a self�
consistent estimator�

wGG� �
w�
GG�

w�
GG� � ���N

wML ������

�we use the fact that if x is a random variable of distribution N
�
m���

�
� then a�x�b is a random

variable of distribution N
�
a�m� b� a���

�
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In this case� it is possible to calculate the exact expression�

wGG� �

���
�
� �

r
�� 
�

Nw�
ML

�
wML
� w�

ML � ����N

 w�
ML � ����N

������

This expression illustrates the way the weight decay constrains the solution� It
�pulls� parameters towards  � When the estimate is lower than a given noise�related
level� the learning procedure� con�dent with this constraint� concludes that the pa�
rameter is indeed  and that the value of the maximum likelihood estimator re�ects
only noise� Because of this bold attitude� wGG� was dubbed the brave generalisation
student�

Let us now study the case of the Laplace regularisation� The expression of ���� �
does not allow to obtain hGi as easily as before� Integrating over wML leads to�

hG �wL�i �

Z ��
�

��

� ew � wML � �

�

��
P �wML� dwML �

Z �
�

��
�

ew� P �wML� dwML

�

Z ��
�
�

� ew � wML �
�

�

��
P �wML� dwML � ��

������

After some simple but tedious algebra� we obtain the somewhat complicated expres�
sion�

hG �wL�i �

�
� �

�

N

�
�� �

��

�
���� �

�
��

N

�
�AB � �� �.�B�� .�A�� �

�p
��

�
Ae�

B�

� �Be�
A�

�

��
where A � p

N

� ew � 	
�

�
and B � p

N

� ew � 	
�

�
� . is the area under the normal

curve� i�e��

. �x� �
�p
��

Z x

��
e�

t�

� dt ������

The optimal � has a value that minimises ���� �� There is no analytical solution to
such a minimisation problem� but it is easy to obtain a numerical solution� Min�
imising ���� � with respect to � is a one dimensional optimisation problem� which
can be solved by any standard technique such as golden search and�or quadratic
minimisation� Furthermore� the shape of the average generalisation error is simple
in this case� so that we are guaranteed to �nd the global minimum� Plugging this
empirical value of � into ���� � gives wGL� the generalisation method solution for a
Laplace prior�

Another problem is that� as we noticed earlier for the weight decay� the above ex�
pression involves the teacher parameter ew� Thus� the same approximation can be
performed� replacing ew with its maximum likelihood estimator wML� and minimising
the resulting expression� The estimator obtained is then equivalent in spirit to wGG��
and we will denote it by wGL�� The self consistent estimator cannot be computed
directly� It can be approximated by iterating the approximation of ew in ���� �� wGL�
can be used as an estimate of ew to obtain a new numerical estimator that we denote
wGL�� Iterating this approximation�minimisation process� we obtain wGL�� wGL
�
etc� The equivalent of the self�consistent estimator would then be wGL��
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Maximum likelihood (w_ML)   
Weight−decay (w_G)          
Laplace regularisation (w_L)
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Estimators for a given level of regularisation

Figure ���� Comparison of two regularisation constraints for a given level of regu�
larisation� The dashed line corresponds to the weight decay� equivalent to a Gaus�
sian prior on the parameter �L� norm�� The solid line corresponds to Laplace
regularisation� The dotted line is the maximum likelihood estimator� All quantities
are scaled by ���N �

	�	 Results for generalisation method

Let us �rst compare the e�ect of the two regularisation methods for a given regu�
larisation level�

Figure ��� illustrates the remarks made in section ���� In this �gure� the regularisa�
tion level has been set to � � �� The solid line is the estimator wGG of ������ obtained
using a weight decay� It is clear that the bias between the regularised solution and
the maximum likelihood increases with the value of the maximum likelihood� This
is because the regularising penalty term grows quadratically with the size of the
parameter� The dashed line corresponds to the estimator obtained using Laplace
regularisation� Small parameters are forced to  and elsewhere there is a constant
bias� Indeed� the regularising function is only linear in this case� The part where the
estimator takes a value of zero will be called the pruning section�

Let us now analyse the case where the regularisation level is set using the gener�
alisation method� Figure ��� displays three estimators obtained with this method�
together with the reference maximum likelihood� The dash�dotted line is wGG�� the
estimator corresponding to weight decay regularisation and obtained by replacingew with wML� For small values of the maximum likelihood� the parameter is softly
constrained to be close to  � Otherwise� there is a slowly decreasing bias�

The brave generalisation student� in dashed line� has a very broad pruning section�
Otherwise the bias is also slowly decreasing� This example shows that even though
the weight decay� by itself� does not lead to pruning �cf� equation ����� the optimi�
sation of the regularisation parameter in the light of the data can lead to such a
pruning e�ect�

On the other hand� the Laplace prior prunes no matter what� The estimator resulting
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Maximum likelihood (w_ML)           

w_GG1                               

Brave generalisation student (w_GG2)

w_GL                                
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Figure ���� Comparison of estimators for two di�erent types of regularisation� with
the generalisation method� The solid line is for Laplace regularisation� The dotted
and dash�dotted lines are for weight decay� All quantities are scaled by ���N �

from the generalisation method� in solid line in �gure ���� shows that the pruning
section of wGL is somewhat smaller than that of the brave generalisation student�
An important improvement over the two previous estimators is that the bias is
reduced extremely fast and is almost non�existent for moderate size parameters�
When iterating the approximation as explained in section ���� the width of the
pruning section increases� but the fast bias reduction is maintained�

	�� Bayesian analysis

We will now analyse this simple problem with a Bayesian point of view� The two
regularisation constraints studied above have their counterparts in prior over the
parameter�

� a Gaussian prior P �wj�� �
q

�
�� exp

�
��w�

�

�
for the weight decay�

� or a Laplace prior P �wj�� � �
� exp ���jwj��

With our Gaussian hypothesis on noise� the likelihood is�

P �Djw� �
�
����

��N��
exp

�
� N

���
S�w�

�
������

As noted above� the likelihood is maximised when the parameter is set to the em�
pirical average of the examples�
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	�� Evidence and evidence framework

The posterior distribution is given by applying Bayes rule�

P �wjD��� � P �Djw��� P �wj��
P �Dj�� ������

where the likelihood is independent of �� P �Djw��� � P �Djw�� This expression
involves �� and is the equivalent to the regularised error displayed in ������ The
maximum of ������ depends on the value of the hyper�parameter �� In order to
optimise this hyper�parameter� we will maximise its likelihood in the light of the
data P �Dj��� This likelihood is obtained by integrating over the parameter w� and
is called the evidence�

P �Dj�� �
Z ��

��
P �Djw��� P �wj�� d� ������

The value of ������ will of course depend on the prior on the parameters�

With a weight decay� the integral is Gaussian� and after some careful algebra� we
derive�

�� lnP �Dj�� � � ln

�
�

��

�
� ln

�
N � ���

���

�
� �NwML�

�

��� �N � ����
� c ������

where c is a constant with respect to ��

The evidence reaches its maximum for the following value of ��

�ML �

���
�

w�
ML
���N w�

ML �
�

N

�� w�
ML � �

N

������

Going back to ������� we write the expression for the posterior distribution�

P �wjD��� �
r

�

��
exp

�
��w

�

�

��
����

��N��
exp

�
� N

���
S�w�

�
������

The posterior distribution is maximised for�

wMPG ��� �
N

N � ���
wML ������

We notice that this solution is� as expected� the same as ����� with the relation
� � ����N � � is equivalent �� rescaled by the variance of the maximum likelihood
estimator�

We combine the solution ������ with the most likely value of � in ������ to obtain
the �nal maximum posterior estimator for a Gaussian prior�

wMPG �

���
�
�� �

Nw�
ML

�
wML w�

ML �
�

N

 w�
ML � �

N

������
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It is interesting to note that pruning arises here explicitly from the data� When
optimising the hyper�parameter in the light of the data� it is sometimes set to ���
This setting forces the most probable estimator to take a value of zero� This is
di�erent from the Laplace prior� As noticed in section ���� this prior always produces
a pruning e�ect� regardless of the value of the hyper�parameter�

Let us now switch to the case of the Laplace prior on the parameter� The calculation
of the �evidence� is now less straightforward� because the integral ������ is not a
Gaussian integral� Because of the simplicity of the parameter location problem� there
are two possibilities�

�� Performing a Gaussian approximation of ������� and optimising it with respect
to �� this is the traditional �evidence procedure��

�� Full calculation of ������� even if the resulting expression can only be optimised
numerically� this is much closer to the Bayesian ideal� and we will call it the
�evidence calculation��

The evidence calculation is not as easy as in the case of the Gaussian prior� due to
the presence of the absolute value in the expression of the Laplace prior� After some
algebra� we obtain the following expression�

P �Dj�� � Zp
�

�

�
e
A�

� .�A� � e
B�

� .��B�

�
���� �

where Zp is a constant with respect to �� A �
p
N


�
wML � ��

N

�
andB �

p
N


�
wML � ��

N

�
�

Predictably� there is no analytical maximum to expression ���� �� Numerical opti�
misation leads to the most likely value of �� �ML that is used to infer the most
probable value of the parameter through �������

The evidence procedure involves a Gaussian approximation to calculate the evidence�
This comes down to making a quadratic approximation of the �regularised� cost
function around its minimum� With a Laplace prior on the parameter� the posterior
distribution is�

P �wjD��� � � exp ���jwj�
�P �Dj��

NY
k��

�

����
exp

�B��
�
y�k� � w

��
���

�CA ������

This can also be written as�

P �wjD��� �
�
����

��N��
P �Dj��

�

�
exp

�
��jwj � N

���
S�w�

�
������

One can already feel in ������ the relationship between � and � in ������ The posterior
distribution is maximised for�

wMPL �

� �
�� ��

N jwMLj
�
wML jwMLj � ��

N

 jwMLj � ��

N

������

It is now clear that this solution is the same as the minimum of the regularised cost
in ���� �� with the following relationship between � and �� � � ���

N � If we de�ne
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�� The e�ect of a pruning prior

M�w� � �jwj� N
��S�w�� we can write a second order Taylor expansion around wMP�

Noticing that wMP is the minimum of M � we write�

M �w� � M �wMPL� �
h

�
�w � wMPL�

� ������

where h is the second derivative of M with respect to w� Using this approximation�
the integral ������ becomes Gaussian� and the minus log�likelihood of the hyper�
parameter becomes�

� lnP �Dj�� � � ln�� ����

�N
� �jwMPj� c ������

in the case where wMP is non zero� where c is a constant with respect to �� Equa�
tion ������ is minimised for�

�ML �
jwMLj
����N

�
��

s
�� ���

Nw�
ML

�
w�
ML �

���

N
������

which leads to the evidence procedure estimator�

wEVL �

���
�
� �

r
�� 
�

Nw�
ML

�
wML
� w�

ML � ����N

 w�
ML � ����N

������

This is the brave generalisation student that was derived with the generalisation
method in the case of a Gaussian prior on the parameters�

	�� MAP solution

Let us now perform the Bayesian inference from a di�erent standpoint� Using Bayes
rule� we write the posterior as�

P �wjD� �
P �Djw� P �w�

P �D�
������

In order to obtain P �w�� we have to get rid of the in�uence of the hyper�parameter
� by integrating over it�

P �w� �

Z �

�
P �wj�� P ��� d� ������

The result of this integration depends of course on the prior on w� The prior on �� on
the other hand� will be the standard� non�informative� improper prior P ��� � ����

With a Laplace prior� the result is�

P �w� �

Z �

�

�

�
exp ���jwj� �

�
d� �

�

�

�
�e��jwj

jwj

��
�

�
�

�jwj ���� �

While the Gaussian prior leads to�

P �w� �

Z �

�

r
�

��
exp

�
��w

�

�

�
�

�
d� �

�p
��

Z �

�
e�

w�u�

� du �
�

jwj ������
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Figure ���� Comparison of estimators for two di�erent priors on the parameter�
with various Bayesian frameworks� The dashed and dash�dotted line are the es�
timators maximising the evidence for a Laplace and Gauss prior �respectively��
The solid line is the MAP estimator� and also the brave generalisation student� All
quantities are scaled�

We notice two important facts� both expressions are similar� and they correspond
to a non�informative prior on the parameter(

Considering that they di�er only by a multiplicative constant� they will lead to the
same results� the MAP estimator for both Gaussian and Laplace prior� Invoking the
negative log of ������� we now need to �nd the minimum of�

� lnP �wjD� � � lnP �Djw� � ln jwj� cte �
N

���
S�w� � ln jwj� c ������

where the constant c is independent of w�

The MAP solution is the minimum of ������� This minimisation must be handled
cautiously� though� Indeed� the negative log probability is not bounded below� it is
not de�ned in zero� where it goes to ��� This is caused by the use of the improper
prior� which leads to a probability density that is not integrable� The MAP solution
is given by another �local� minimum of ������� Di�erentiating ������ with respect to
w leads to�

�

�w
�� lnP �wjD�� �

N

��
�w � wML� �

�

w
������

which leads to the following solution�

wMAP �

���
�
� �

r
�� 
�

Nw�
ML

�
wML
� w�

ML � ����N

 w�
ML � ����N

������

This happens to be the brave generalisation student found above in the case of
Gaussian noise and generalisation method� It is remarkable that this estimator is
actually independent of the prior on the parameters�

In order to compare the Bayesian estimators in the same conditions as the general�
isation method estimators� we plot the estimators on �gure ����
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�� The e�ect of a pruning prior

Maximum Generalisation Bayes
Prior Likelihood Method Evidence MAP

approx� self�cons� Exact Approx�

Gauss wML wGG� BGS wMPG wMPG BGS
Laplace wML wGL � wMPL BGS BGS

Table ���� Results on the location parameter problem� BGS denotes the brave

generalisation student that was obtained in several conditions� All other estimators
have the same syntax as in the text�

	�� Overall results

The results of the Bayesian analysis of the location parameter problem are sum�
marised in table ����

The brave generalisation student is a very popular estimator� it has been derived in
three di�erent frameworks and appears for both priors�

All estimators present roughly the same shape� They display a pruning section of
variable width for small parameters� and a slowly decreasing bias when the value of
the maximum likelihood increases� This has a very simple explanation� The prior on
the parameter gives the student some information saying that the teacher parameter
has a tendency to be close to zero� When the maximum likelihood is �su�ciently
close� to  � the student tend to use this information and decide that the observed
data could very well result from a teacher that is actually  � The di�erence between
the three estimators in �gure ��� is their appreciation of what �su�ciently close� is�
For that matter� the brave generalisation student displays a very brave behaviour�
leading to the largest pruning section of all estimators�

	��� Analysis

All the results above relate to the value of the maximum likelihood estimator� Let
us now consider performance from another standpoint� We wish to evaluate the
behaviour of the estimators as a function of the actual value of the teacher parameter�
Indeed� a maximum likelihood value of wML � � could easily come from a teacher
parameter ew � �� in which case all our regularised estimators would commit a
small error� If the number of examples is small� the same maximum likelihood could
be observed for ew �  � in which case most estimators would perform quite well� It
could also �though with extremely small probability� result from a teacher parameterew � � ��� and all estimators seen here would be completely misled�

We measure this e�ect by computing the average excess error � i�e� the squared
di�erence between the estimator and the actual teacher parameter� averaged over all
possible samples� i�e� over the distribution of the maximum likelihood estimator� All
estimators are given as a function of wML� For unbiased Gaussian noise of variance

��� the average of the observation is N
� ew� �N � so the average excess error for a
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Maximum likelihood             
Evidence (Gauss)               
Evidence (Laplace)             
Generalisation method (Gauss)  
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Figure ���� Average excess generalisation error computed as a function of the
teacher parameter� for all the estimators reviewed above� The solid lines are for the
Laplace prior� the dashed lines for the Gaussian prior� The bold lines are for the
generalisation method� the standard ones for Bayesian inference� The dash�dotted
line is the brave generalisation student which arises for both priors� The dotted line
is the maximum likelihood estimator�

generic estimator wE is�

)E � ew� �
s

N

����

Z ��

��
� ew � wE�

� e�
N�wML�ew��

��� dwML ������

In the case of the maximum likelihood estimator� )ML � ew� � ���N according
to ������� In order to simplify matters� we will scale all average excess errors by
���N � If the scaled quantity is above �� it performs worse �the error is higher� than
the maximum likelihood estimator for this value of ew� On the other hand� it performs
better when the scaled average excess error is smaller than ��

Figure ��� presents the �scaled� average excess error for all the estimators studied in
this chapter� They all display the same general shape� There is a sharp decrease in
error around  � where the prior is rightfully used� For large teacher parameters� all
estimators are asymptotically equivalent to maximum likelihood� The good perfor�
mance for small teacher parameters compensates with an overshoot for parameters
of intermediate size� This is the logical consequence of the use of our priors� A
large part of the maximum likelihoods generated for such intermediate parameters
are mistaken by our estimators for averages arising from small teacher parameters�
leading to inadequate pruning� and high estimation error�
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�  The e�ect of a pruning prior

	��� In�uence of the prior

The above analysis tells us what estimator is best for which value of the teacher
parameter� On the other hand� we might be interested in �nding a way of comparing
estimators regardless of the teacher parameter�

Integrating the scaled average excess error di�erence between an estimators and the
maximum likelihood with a uniform prior on parameters gives a quantity that we
will call the uniform increase in error for estimator wE�

UE �

Z �
)E � ew��)ML � ew�� U� ew� d ew ������

where U� ew� is the uniform distribution on ew�
UE measures the overall degradation of performance that our regularised estimators
produce when confronted with a system for which the prior they use is wrong� The
uniform increases in error for all regularised and Bayesian estimators are given in
the following table�

Estimator wMPG wMPL wGG� wGL BGS

Total di�erence ���� �� � ����  ��� ����

It is no surprise that all estimators perform� with a uniform measure� worse than
the maximum likelihood and thus present a positive uniform increase in error� wML

is� after all� the optimal unbiased estimator� The increase is roughly proportional to
the size of the overshoot in �gure ���� The noticeable exception to this rule is the
estimator obtained with the generalisation method for the Laplace prior� The fast
reduction in bias noted in section ��� leads to the smallest uniform increase in error�
even though the overshoot is fairly high�

When the distribution of teacher parameters has signi�cant mass around  � the
picture is entirely di�erent� With an improper distribution proportional to �� ew� the
brave generalisation student performs best� For a standard Gaussian distribution
of teacher parameters� it all depends on the variance '�� of the distribution� Very
large variance spreads the mass across the teacher parameter axis and results will
be similar to the uniform case above� On the other hand� when the variance is
low� the mass is localised around  and favours the most conservative estimators� To
illustrate this e�ect� we de�ne as above the Gaussian increase in error by integrating
the average excess error over ew with a Gaussian distribution of ew�

GE��� �
Z �

)E � ew��)ML � ew�� N � ew� ��� d ew ������

Figure ��� presents the evolution of this quantity with the variance of the teacher
parameter� For small variance� all estimators predictably lead to a decrease in error�
The estimators linked to the weight decay perform well� as the teacher distribution
corresponds here to the prior they use� When the scaled teacher parameter� has
variance '�� � �� the Gaussian increase in error is�

Estimator wMPG wMPL wGG� wGL BGS

Total di�erence � ��� � ���� � ���� � ���� � ����
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Figure ���� In�uence of the teacher parameter variance on the increase in average
excess generalisation error� For small variance� all estimators perform better than
maximum likelihood� As the variance grows� performance tend to get worse�

	��� In�uence of the hypothesis

An important issue is the in�uence of the hypotheses on the results� or rather the
in�uence of these hypotheses being wrong� All the calculation above have been per�
formed for the case of a Gaussian noise on the data� This hypothesis in�uences the
calculation by shaping the likelihood that is the basis for all methods� Of course�
it in�uences the maximum likelihood� It is also of great importance during the
Bayesian inference as the likelihood is involved in both the evidence framework and
the MAP calculations� Lastly� it in�uences the choice of a quadratic cost function�
a very important hypothesis when using the generalisation method�

An exhaustive study of this in�uence is di�cult� There are many possible noise dis�
tributions� and the Gaussian distribution is one of the few for which the distribution
of the average has an easy analytical expression� If we take the example of a Lapace
noise distribution� it is hard to derive the expression of the distribution of the the
average of a number of sample� This expression is necessary to integrate the error
and produce the average excess errors on which our conclusions are based�

However� we know from the central limit theorem that the distribution of the average
of the observation sampled from a distribution converges to a Gaussian distribution�
As the average and variance of the noise are supposed well�known in our problem�
we expect the main part of our results to stay valid�

�The teacher parameter is scaled by
p
���N � so this can be the case if one can think� for example�

that the variance of the teacher parameter is �� times that of the noise� and in the same time ��
examples are available�
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� � The e�ect of a pruning prior

	��� Applications

From this section on we will address the problem of using this pruning prior together
with neural networks models on operational problems� First we will use the sunspots
benchmark problem as an example of time series modelling� then perform system
identi�cation on a small arti�cial system�

There are mainly two ways to improve the generalisation abilities of a neural network�
Regularisation is most often used through the addition of a weight�decay term to the
cost function� Pruning simply suppresses parameters that are believed to be useless�
These methods are presented in chapter �� and have been applied to a number of
problems� including time series modelling and system identi�cation�

The regularisation functional that we study in this chapter is simply the L� norm
of the regularised parameters� and we will demonstrates how it provides automatic
pruning of irrelevant parameters� without the use of a speci�c pruning technique�
Combining two ways of improving generalisation error� it is a powerful tool for neural
networks modelling�

Let us recall the expression of the regularised cost in that case�

C�w� � S�w� � �
PX
k��

jwkj ������

where S�w� is the standard �e�g� quadratic� cost� and � is the regularisation param�
eter� This kind of regularisation is sometimes referred to as formal regularisation�
while pruning goes by the name of structural regularisation� As discussed earlier in
this chapter� this kind of regularisation corresponds to the use of a Laplace prior on
the parameters� while weight�decay is equivalent to a Gaussian prior�

The interesting property of this regulariser is that for any non�zero weights wi at
the minimum of C�w�� the �rst derivatives of ������ are zero� so that������S � �w�

�wi

���� � � jwij �  ������

This means that the value of any non zero parameter is found at a point where the
sensitivity of the data mis�t to this parameter is in accordance with ������� If this
is not possible �i�e� the sensitivity is nowhere that high�� the parameter is forced to
 and pruned out of the network�

The fact that this regulariser is not analytical in  is discussed in �����

	��� Time series

In order to illustrate the use of the pruning prior for time series processing� we
choose the well known sunspots data� These have been historically the �rst time
series studied using an autoregressive model� They have been established as one of
the benchmarks for time series prediction algorithms using neural networks� This
series is a yearly record of average sunspot activity� It has been recorded since ��  �
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Figure ���� The well�known sunspots data� The dotted line indicate the limits of
the three sets �training� validation and test��

and displays a cyclic pattern with maxima� The time between these ranges from �
to �� years� with a median of �� years� It is displayed on �gure ����

In accordance with previous work� we attempt to predict one value using the twelve
previous ones� leading to a network with �� input units and one output unit� The
available data constitutes ��� input�output pairs which are split into three sets� In
the training set� we try to predict activities from ���� to ��� � amounting to � �
examples� the validation set uses data from ���� to ���� ��� pairs�� and the test set
runs from ���� to ���� ��� examples��

No delay selection scheme was used during these experiments� all models and results
mentioned later thus use the exact same network structure�

Performance is measured in terms of average relative variance �arv�� which is the
ratio between the average squared error of the model and the variance of the data�
The widely used de�nition of the average relative variance of the prediction on a set
D taken from the entire set S is�

arv�D� �

�
jDj

P
i�D

�
y�i� � f

�
x�i�

���
�
jSj
P

i�S
�
y�i� � hyiS

�� ���� �

It should be noted here that the more widely used de�nition scales by the overall

variance of the data� This gives arti�cially high values of the error on the validation
set� where the intrinsic data variance is around twice as high as in the other sets�
A more �proper� de�nition of the arv quantity would relate the error of the model
and the variance of the data calculated on the same set D�

arv�D� �

P
i�D

�
y�i� � f

�
x�i�

���
P

i�D
�
y�i� � hyiD

�� ������

In order to ease comparison with other papers� we will stick to the widely used
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Figure ���� Top�left� input�to�hidden parameters� by hidden unit� Every hidden
unit has �� incoming connections� weights ���� go to HU �� weights ����� to HU
�� etc� Bottom�left� hidden�to�output parameters� Right� the network� Dotted lines
correspond to connections that are one order of magnitude lower than those in solid
line� A vertical line through a cell corresponds to an active threshold�

de�nition� The proper numbers can be obtained by multiplying the given values by
������  �� � and  ���� for the training� validation and test sets respectively�

	��	 Experiments and results

The model we used is a ���� �� neural network� containing ��� parameters� which can
be considered as highly over�parameterised compared to the � � data in the training
set� Training is performed by minimising the cost function ������ as mentioned above�
The optimisation technique is a standard conjugate gradient� implemented under the
SN simulation software� from Neuristique� The regularisation parameter is set with
the help of the validation set� by choosing the value of � that minimises the validation
error� and the results are evaluated on the test set� As discussed in chapter �� this
scheme is not very satisfying� but has been adopted because it makes use of the �
available sets in a manner similar to that of most studies�

The parameters of one of the networks we obtained are displayed on �gure ���� It can
be seen that in the course of the learning procedure� � of the hidden units have been
disabled� and e�ectively pruned� Some of the input connections of the remaining
hidden units have also been driven to  �e�g� in the third hidden unit�� The solution
displayed here is typical of those we obtained� � units perform most of the work�
with one �sometimes two� additional units contributing to a lesser extent� In the
inputs� the biggest contributions come from the �rst units� one middle unit �t � �
here� and the last two units� This pattern has already been observed by Svarer et al�
������ using a completely di�erent method�
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Figure ���� Left� magnitude of the input�to�hidden weights� Notice the logarithmic
y�axes� Right� distribution of the log absolute value of the parameters� Notice the
two modes corresponding to the pruned and not pruned weights�

	��� Parameter distribution

Figure ��� corroborates the pruning e�ect by displaying the distribution of the pa�
rameters� On the left panel� the magnitude plot shows that input weights of the
same network have been more or less clustered in two categories� roughly� the active
weights are greater than � ��� when the rest are gathered below � �
� Again� we
see that six hidden units have been e�ectively discarded� On the right� the empirical
distribution of the absolute values of the weights of � networks trained with the
pruning prior� With a logarithmic X�axis� it clearly displays two modes� one cor�
responding to the pruned parameters� and the other to those that are still in use�
Apart from its illustrative purpose� this provides a way of empirically counting the
number of e�ective parameters� This number can be used to obtain an algebraic
estimate of the generalisation error�

This leads us to discussing the empirical distribution of the weights� A natural idea
would be to test this empirical distribution against the Laplace distribution that
we used as a prior� It should be clear from the plots presented here that the solu�
tion parameters do not follow a Laplace distribution� and that is to be expected�
As Bayesians are well aware� one should indeed not confuse the probability of the
parameters �the posterior� i�e� regularised cost� with the assumption on their distri�
bution �the prior� i�e� the regularisation functional��

Of higher interest is the consideration of the actual empirical distribution� We used a
Kolmogorov�Smirnov test to check each of the � network solutions obtained against
the empirical distribution obtained by the combination of the rest of them� The result
of this test is that only two networks have signi�cance level between � and � percents
against the others� The rest has higher signi�cance level� up to � %�

One could wonder why none of these �pruned� weights actually have a  value� It
should be understood that ������ is valid for the exact minimum� obtained after a
continuous optimisation� In the case of numerical learning� we proceed by discrete
optimisation� minimising ������ in a number of steps� until the gradient is considered
su�ciently small� An unnecessary parameter will typically endure oscillations around
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Train Test Validation
Model�arv ��������� � ����������� �����������

Linear  ����  ����  ���
Weigend / al� �  � ��  � ��  ���
Svarer / al� ��  � � �  �  �  � �� �  �  �  ��� �  � �
Pruning prior  � �� �  �  �  � �� �  �  �  ���� �  � ��

Table ���� Comparison of the results obtained using di�erent methods� The linear
model includes an intercept� The results reported for Svarer � al� are averaged over
� retrained networks� for the pruning prior we averaged over �� network solutions�

 with an amplitude decreasing with the step size� It will hence get closer to  but
it is extremely unlikely that it will reach this exact value� This leads to one more
remark� the technique known as �early stopping� is a poor combination with the
pruning prior� By stopping before the minimum is reached� ������ will not stand�
and therefore we have no guarantee on the pruning e�ect�

Table ��� displays the overall results obtained using the above procedure compared
with previously released results� The �gures reported by Svarer et al� are averaged
over � successful trainings� and the results reported for the pruning prior are averaged
over � trainings�

	��� System identi�cation

In this section� we consider the example of a simple� arti�cial system�

y�t� �
u�t� � y�t� ��

� � y��t� �� � u��t� ��
������

Figure ��� displays the behaviour of the system for two di�erent kinds of input
signal� a step signal of low frequency� and a random step signal� which corresponds
to the training sequence we use to identify the parameters of the models below�

The random step signal is made out of steps of random lengths and amplitude�
This type of signal allows for a better representation of the frequency domain than a
purely random signal� For training� we generate �  data using such a signal as input
u�t�� The output y�t� is then corrupted by Gaussian noise� � �  ��� This is a rather
high value of the noise� In order to evaluate the results� we generate a large test
set of � �    data to get a hopefully fairly accurate estimate of the generalisation
error� In all models below� we use the two last values of both u and y as input�
"y�t � ��� y�t � ��� u�t�� u�t � ��# is the input vector of the model that attempts to
predict y�t��
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Figure ��	� Response of the system ���� for two di�erent input signals� The dashed
line is the input signal and the solid line is the system response�

	��� Experiments and results

We �rst perform a linear identi�cation on our �  noisy data� The values of the
parameters are gathered in the following table� We also mention the average and
standard deviation of the coe�cients obtained in � �    experiments using as many
di�erent sequences of �  noisy data�

y�t� �� y�t� �� u�t� u�t� �� �

Training sequence  � ��  ����  ���� � ���� � � � 
Average of �     � ��  ����  ���� � ���� � �   
St� dev� of �     � �  � ��  � ��  � ��  � ��

Predictably� the main linear in�uences come from u�t� and y�t � ��� Figure ��� 
displays the behaviour of the linear model for the same signals as before� It is clear
that the linear model is unsatisfactory�

The second step is to use a neural network to perform the identi�cation� We use
a ��� �� network to try to �t the data� This neural network model contains ��
parameters �including bias�� which can be considered as slightly over�parameterised�
compared to the �  data at hand�

Training is performed by minimising the regularised cost ������� with MAP update
of the regularisation parameter as in equation ������� The performance of all models
is evaluated on the � �    data of the test set�

On �gure ���� we display a plot comparable to �gure ���� for our system identi�cation
case� One can see that among the � hidden units originally in the model� only �
remains in use� All the other hidden units have been pruned out of the network� This
network is the smallest one we obtained� with only � parameters� Other solutions
have up to �� active parameters� and usually involve � hidden units� The number
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Figure ���
� Response of the linear model for two di�erent input signals� The
dashed line is the input signal� the solid line is the system response� and the dotted
line is the modelling error�

of active parameters can vary from a solution to another� depending on the initial
conditions� However� it stays well short of the �� weights of the full network�

The table below summarises the results obtained by both the linear model and a
number of non�linear neural network models on the noisy training set and on the
non�noisy test set� In this table� NN means Neural Networks� The numbers indicated
are the mean squared error �MSE� over the training �resp� test� set� The performance
on the test set is higher as we use only non�noisy data� when the training set has a
relatively high level of noise�

Number of Training set Validation set
Model�MSE parameters ��  data� �� �   data�

Linear model �  ���  ��� 
Unregularised NN ��  ���  ����
Regularised NN �!��  ���� �  � �  �� � �  �  �

These results show that the non�linear regularised model predictably achieves per�
formance slightly above the linear model� Furthermore� the use of the pruning prior
limits the number of parameters to a number comparable to linear model� The pa�
rameters show the same pattern as in the linear case� the main contribution arises
from u�t� and y�t � ��� The in�uence of the other inputs and the non�linearity of
the model allow for an error that is half that of the linear model�

COMMENTS

The part of this chapter related to the �parameter location problem� �from sec�
tion ��� to ���� is related to results published in Hansen and Rasmussen ������
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and Goutte and Hansen ������� These papers study the case of Gaussian and Laplace
prior on the same toy problem� using the evidence framework and the generalisa�
tion method� The Gaussian case is studied by Hansen and Rasmussen ������� who
coined the term brave generalisation student� The remark relative to the P � ew� � �� ew
distribution is also theirs�

Sections ���� and ���� contain unpublished material�

The application to time series modelling and system identi�cation is mostly taken
from Goutte ������� Other comments follow�

	��� The e�ect of weight�decay is shown e�g� by Krogh and Hertz ������� while
pruning techniques originate in the work of Le Cun et al� ���� �� Formal and
structural regularisation are discussed by Denker et al� �������

	��� The sunspots data have �rst been studied by Yule ������ with an AR model�
The have �rst been used in the context of neural networks prediction byWeigend
et al� ���� ��

	��	 The SN simulation software from Neuristique is discussed in Bottou and Le
Cun ������� The conjugate gradient method is detailed in section ����	 see also
Press et al� ������� The results refer to Weigend et al� ���� � and Svarer et al�
������ in the list of references below�

	��� The simple system to identify is taken from Ljung et al� �������
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A

Probability

We will here present the axiomatic de�nition of probability� This can be found in
any textbook on statistics and probability� The aim of this appendix is to provide a
quick reference for some of the concepts used in the thesis� particularly chapter ��

Let us start with a couple of de�nitions� In the following� 0 is a set� and A is a
collection of subsets A of 0� A � A� A � 0� For a subset A� A represents the
complement of A in 0� i�e� A � 0 nA�

De�nition A�� A nonempty collection A of subsets of 0 is a �eld if�

� A � A � A � A�
� A�� A� � A � �A� �A�� � A�

De�nition A�� A �eld A is a ���eld if fAig�i�� � A � S�
i��Ai � A�

The de�nition of a ���eld extends that of a �eld by considering an in�nite family of
subsets of 0� We can now proceed and de�ne the concepts of measure and measure

space�

De�nition A�� A function  � A � " ���" is a measure if�

�  ��� �  �

�  fAig�i��mutually disjoint�  �
S�
i��Ai� �

P��
i��  �Ai��

De�nition A�� If 0 is a set and A a ���eld	 �0�A� is a measurable space�

De�nition A�� If �0�A� is a measurable space and  a measure	 �0�A� � is a

measure space�

���



��� Probability

De�nition A�	 If �0�A� � is a measure space	 and  �0� � �	 then �0�A� � is a
probability space	 and  is a probability on �0�A��

This is the axiomatic de�nition of probability � We will now refer to a subset A
from a probability space as an event � without mentioning the actual existence of the
underlying set 0 and ���eld A� In that context� the measure  is a probability� and
will be noted P �A��

From the above de�nitions� we deduct the following basic properties of probabilities�

�� P ��� �  �

�� P
�
A
�
� �� P �A��

�� A�� A� � A� A� � A� � P �A�� � P �A���

�� P �A� �A�� � P �A�� � P �A��� P �A� �A���

�� Ai � A� P �
S
Ai� �P

i P �Ai��

Let us de�ne the concept of conditional probability �

De�nition A�� If A and B are two events such that P �B� 	�  	 the conditional
probability of A given B is�

P �AjB� �
P �A �B�

P �B�
�A���

The conditional probability is indeed a probability� with respect to de�nition A���

De�nition A�� Two events A and B are independent i� P �A �B� � P �A� P �B��

We can also de�ne the concept of independence by using the conditional probability�
A is independent of B i� P �AjB� � P �A�� This means that the outcome of B does
not in�uence the outcome of A� It is equivalent to say that A is independent of B�
B is independent of A� or A and B are independent� We prolong de�nition A�� to a
set of events�

De�nition A�� A set fAigNi�� of events are mutually independent i��

P

�
N�
i��

Ai

�
�

NY
i��

P �Ai� �A���
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B

Non�parametric regression

B�� Smoothing regression

We deal here with a type of regression di�erent from the one sudied earlier in chap�
ters �� Non�parametric methods have been developped in the sixties to surpass the
limits of classical parametric methods�

Recall that we try to estimate the regression of input x to output y based on a set

of N examples
�
x�i�� y�i�

�
� Rather than parameterise the mapping f from x to y�

we consider that for an input x� it is likely that the data set features some input
vector x�i� that is close to x� With reasonable assumptions on the smoothness of f �
we expect the regression estimate �y to be close to y�i��

The non�parametric methods thus provide a regression estimation �y that is data�
driven� given as a weighted combination of the data�

�y �x� �
�

N

NX
i��

Wi �x� �y
�i� �B���

Even when not de�ned in such terms� non�parametric methods accept an equivalent
expression of this form� We will here present two basic methods� k�nearest neigh�
bours and kernel smoothing� and combine them with more advanced features� For
both methods� we present examples of implementation� including for the smoothing
parameter tuning� The chapter ends with a presentation of GRNN� a popular model
in the �eld of neural computation� This links these non�parametric techniques to the
�eld of neural networks�

Throughout this chapter� we will apply the methods discussed to the well�known
motorcycle data set� It is a one dimensional set giving the head acceleration of a
post mortem human test object as a function of the time after a simulated impact
with a motorcycle� A plot of the data set is given on most �gures in this chapter�

���



��� Non�parametric regression
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B�� k�nearest neighbours

The k�nearest neighbours algorithm generalises the idea of moving average to re�
gression estimation� It performs an average of the output y�i� of the k data points
for which x�i� is closer to x� giving the following uniform weight sequence�

Wki �x� �

�
N
k i � Vk �x�
 otherwise

�B���

where Vk �x� �
n
i � x�i� is one of the k data inputs closest to x

o
is the set of the k

data points closest to x� The k�NN regression estimation is then�

�yk �x� �
�

N

NX
i��

Wki �x� y
�i� �

�

k

X
j�Vx

y�j� �B���

Many alternatives exist to the uniform weight sequence� such as local linear �t � or
the application of a kernel �cf� section B�� ��

Figures B�� and B�� display two examples of k�NN regressions applied to the motor�
cycle data� In �gure B��� we used a small number of neighbours� leading to a typical
case of under�smoothing � The behaviour of the estimate is highly in�uenced by the
noise on the data� The second regression� in �gure B��� is made by using too many
neighbours� and the regression curve is clearly over�smoothed� The observational
noise has been greatly reduced� but the estimation bias is important� Notice e�g�
that the region between � and � ms has been �attened�

B�� Error decomposition for k�NN estimates

The balance between the reduction of observational noise and the estimation of the
�true� regression curve is illustrated by the bias�variance decomposition� We have
addressed this issue for parametric models in section �����
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k�NN implementation and computational issues ���

The asymptotic expressions of bias and variance for one dimensional k�NN estima�
tion using a weight setting given by �B��� are given in the following proposition�

Proposition B�� �Lai� ����� When k ��	 N �� and k�N �  	 the bias and
variance of the k�NN estimate with uniform weight sequence are�

Bias� E ��ykNN �x��� f �x� �
�
k
N

�� f ���x�p�x���p��x�f ��x�
�
p�x��

Variance� var ��ykNN �x�� � �

k

To understand these expressions fully� let us recall that f � f � and f �� are the regression
function and its �rst two derivatives� p is the density of the input� and �� is the
variance of the noise on the observations�

When k is low� the bias will tend to be low �for a given N�� but the variance�
inversely proportional to k� will be high� It is the opposite when k is too large� as
illustrated on the example above� Furthermore� Proposition B�� allows us to �nd
the asymptotically optimal trade�o� between squared bias and variance� In order
for both those quantities to converge towards  � let us impose that both should be
asymptotically equivalent� If we focus on the quantities of interest� i�e� k and N � the
equivalence between squared bias and variance gives �k�n�
 � ��k�

The asymptotical setting of k should thus be k � O
�
N

�
�

�
in order to obtain reduc�

tion of both variance and bias� The variance being inversely proportional to k� this
setting makes the mean squared error converge to  like N� �

� � The above proposi�
tion ensures the convergence of the estimate towards the true regression curve� in the
limit of the great number of examples� and provided that k is chosen in accordance
with the above rate�

B�� k�NN implementation and computational issues

the basic implementation of the uniform weight sequence is pretty straightforward�
and is given here in MATLAB code� x is the input where the estimation is performed�
Xdata and Ydata are the matrix of the input and output vectors �respectively� in
the training set� and k is the number of neighbours that we use�

function y � knn�x� Xdata� Ydata� k�

�P N� � size�Xdata� �

distance � zeros�N� �� �

for j � �	N

distance�j� � �Xdata�	� j� 
 x�� � �Xdata�	� j� 
 x� �

end

�sorteddist� Index� � sort�distance� �

y � sum��Ydata�	� Index��	k������ � k �

In such a basic implementation� the dominant cost arises from sorting the distances
for every estimation� For N examples and P �dimensional inputs� such an estimation
can be done in O �N �logN � P �� time�
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Figure B��� Several kernels are plotted in order to compare their shapes� The
uniform kernel is also plotted for comparison�

In the case of one�dimensional data� simpli�cations arise� On pre�sorted data� the
estimation can be performed by a single pass over the data� bringing the cost to
O �N�� i�e� linear in the number of examples� Furthermore� repeated estimation are
also very fast� computing the estimates in all N data points x�i� is also linear� Lastly�
formulas can be derived for a fast update of the estimation in case the training set
is modi�ed�

This shows that the k�NN estimator is an extremely fast regression method� Further�
more� with a sound choice of neighbours� k�NN regression usually performs well� The
crude averaging of Eq� B�� can be replaced by more sensible methods as explained
later in section B�� � The speed and ease of use of the k�nearest neighbours method
make it an interesting basis for comparison�

B�� Kernel estimators

Let us now consider that rather than taking a �xed number of data� we will weigh
the data points according to their distance to the point x where we estimate� A
simple solution is to use a kernel function to weigh the in�uence of each data point�
This is the idea behind the well known Nadaraya�Watson estimator� which uses the
weight sequence�

Wdi �x� � N
Kd

�
x� x�i�

�
PN

k��Kd

�
x� x�k�

� �
Kd

�
x� x�i�

�
�pd �x�

�B���

Function Kd �x� is the kernel of width d� de�ned as K �x�d� �d� where K is the
standard kernel� Expression B�� is related to density estimation� as �pd �x� is the
Parzen window estimation of the input density in x� Figure B�� presents the shape
of some of the most used kernels�
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Error decomposition for kernel estimates ���

� The Gaussian kernel is a Gaussian function of mean  and variance �� K �x� �
�p
��
e�

x�

� �

� The Epanechnikov kernel is a quadratic function with compact support�K �x� �
�



�
�� x�

�
I
�
x� 
 �

�
�

� The Quartic kernel is a fourth degree polynomial with compact support�K �x� �
��

��
p
�

�
�� x�

�

��
I
�
x� 
 �

�
�

� The uniform kernel given for comparison corresponds to a moving average
around x � K �x� � �

�I �jxj 
 ���

I is the indicator function which value is � in the interval de�ned by the condition
and  outside�

The kernel estimation in x is then�

�yd �x� �
�

N

PN
i��Kd

�
x� x�i�

�
y�i�

�pd �x�
�B���

Apart from the Gaussian kernel� notice that all kernels presented on �gure B��
have compact support� This gives interesting computational properties� discussed in
section B��� It also raises a critical point� the estimate is not de�ned when �pd �x� �  �
This is the case in two situations�

�� when the kernel estimation is performed outside of the data range	

�� whenever the kernel size is so small that in some points� no data can be en�
compassed in the kernel�

At any rate� �y �x� can be de�ned as being the average of the outputs in such cases�

Figures B�� and B�� present two di�erent estimation curves obtained on the motor�
cycle data using an Epanechnikov �i�e� quadratic� kernel� In �gure B��� the kernel size
is much too small and the estimation is under�smoothed� it follows the data much
too closely� On the other hand� �gure B�� displays a typical case of over�smoothing�
The regression curve is obviously badly estimated in the range � !� ms�

The trade�o� now depends on the kernel size d� The following section investigates
this in the light of the bias!variance asymptotic expressions�

B�	 Error decomposition for kernel estimates

We present here a result similar to Proposition B�� in the case of kernel smoothing�

Proposition B�� When d �  	 N � � and Nd � �	 the bias and variance of

the one dimensional kernel estimate with Epanechnikov weight sequence are�

Bias� E ��yk �x��� f �x� � d� f
���x�p�x���p��x�f ��x�

�p�x�

Variance� var ��yk �x�� � �

�Ndp�x�

c�C� Goutte ����



��� Non�parametric regression

Data point       
Kernel regression

0 10 20 30 40 50 60
−150

−100

−50

0

50

100

time after impact (ms)

he
ad

 a
cc

el
er

at
io

n 
(g

)

Kernel regression on motorcycle data

Figure B��� Regression curve for a kernel
estimation with a small kernel� d � ����
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Figure B��� Regression curve for a kernel
estimator with a large kernel� d � ����

As in proposition B��� f and p are the regression function and the input density
�respectively��

Proposition B�� clearly shows that d and k play asymptotically equivalent roles� with
k � �Ndp�x�� This is intuitively natural� as �Ndp�x� is approximately the number
of examples to be expected in the vicinity of x� The proposition also gives the
asymptotic setting of the kernel size� Using the same argument as in section B��� we

have d � O
�
N����

�
� When this asymptotical setting is adopted� the mean squared

error between the true regression curve and the kernel estimate decreases like N�
���
as before�

B�� Kernel implementation and computational issues

The implementation of a kernel smoother is also simple� as presented in the MAT�
LAB routine below� We compute the kernel estimate in x based on the data in Xdata

and Ydata� with a kernel of width d� using a Gaussian kernel shape�

function y � kernel�x� Xdata� Ydata� d�

�P N� � size�Xdata� �

sqdist � zeros�N� �� �

for j � �	N �� Squared distances

sqdist�j� � �Xdata�	�j� 
 x�� � �Xdata�	�j� 
 x� �

end

s� � � � d � d �

W � exp�
 sqdist � s�� � �� Weights calculation

y � Ydata � W � sum�W� � �� Regression estimation

There are two main conceptual di�erences between this case and the k�NN algorithm
described in section B���

�� no sorting of the distances is necessary before the estimation	
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Smoothing parameter tuning ���

�� all the examples are weighed and used in the estimation�

This last point is important� as it reveals the complexity of the estimation� For
a single point� the complete kernel estimation requires linear O �N� time� This is
comparable with the k�NN method� though the complex operations involved here
�such as exponentiation� yield a multiplicative factor�

Contrary to the k�NN algorithm� no sorting is here necessary� However� for repeated
estimation� it is necessary to re�calculate the entire weight sequence for each point�
making the regression estimation on N points O �N�

�
�

In order to lower the calculation time� it is convenient to use a kernel with compact
support� Thus� only a �hopefully small� number of data will actually contribute to
the estimate� We present here the implementation of the Epanechnikov kernel� the
shape of which can be seen from �gure B��� The following code replaces the last two
lines above�

Idx � find�sqdist � s�� � �� Gets data in support

W � �� 
 sqdist�Idx� � s�� �

if sum�W� � �

y � Ydata�Idx�� � W � sum�W� � �� Normal estimation

else

y � mean�Ydata��� � �� No data in the support

end

The only di�erence� apart from the kernel shape itself� is that we are now required
to test whether there were data in the support�

When the number of data is large and the kernel width is small �these two character�
istics usually go together according to proposition B���� the speed�up resulting from
the use of a compact support kernel can be very important� For an Epanechnikov
kernel of size �� the average number of data involved in the estimation is � instead
of ��� for the Gaussian kernel� yielding an expected speed�up of around ���

B�� Smoothing parameter tuning

The above techniques allow for an easy estimation of the regression curve� Further�
more� they are consistent� and we have some asymptotical convergence results� The
reliability of the estimate in a practical case� however� relies on a proper setting of
the smoothing parameter � either the number of neighbours or the kernel size�

We will here again invoke the concept of generalisation� In non�parametric regression
as well as for parametric method� the quality of the estimation is measured by
the expected error� It is common to assess the generalisation error by computing
the leave�one�out cross�validation estimate� as presented in section ���� The LOO
estimate corresponds to the average error on a data point when the estimation is
performed on the basis of the remaining points�

ELOO �
�

N

NX
j��

e
�
�y�j

�
x�j�

�
� y�j�

�
�B���

c�C� Goutte ����



�� Non�parametric regression

where e ��� �� is a measure of the error between the estimation and a data point�
usually the squared di�erence �with Gaussian assumption on the noise�� �y�j rep�
resents the estimation performed without observation j in the dataset� It is rather
convenient to calculate ELOO for non�parametric regression�

ELOO �
�

N

NX
j��

������ �

N � �

X
i��j

Wi

�
x�j�

�
y�i� � y�j�

������
�

�B���

Technical remark� Non�parametric methods usually compute an estimate based
on data surrounding a given point� This is a weakness when attempting to estimate
the regression curve at e�g� the boundaries� In such a case� many data points lie on
one side of the estimation point� but virtually none on the other side� producing
weak estimates� This can prove troublesome when trying to assess the value of the
smoothing parameter� The poor estimate at the boundaries is weakened by the fact
that the LOO discards each point when trying to estimate performance around
it� This will lead to choosing too small a value of this parameter� producing an
under�smoothed regression curve� To compensate for this undesirable behaviour� it
is customary to weigh the examples in �B��� in order to avoid involving extreme
data points� Boundary data will thus be involved when estimating the regression�
but no LOO estimation is performed there� as it would surely lead to poor results� A
common technique consists in weighing to  a certain percentage of the points that
are closest to the boundaries� However� if the notion of boundary is well�de�ned in
the one�dimensional case� it is not the case as the number of dimension increases�
In high dimensions� virtually all points can be considered as being �close to the
boundaries� and it is not clear how to adapt this correction�

B�� Practical implementation and computational issues

We present below the basic implementation of the LOO calculation for nearest neigh�
bours regression� It is given in MATLAB code� and the variables are the same as in
section B��� The weighing technique mentioned above is implemented by not count�
ing the LOO contribution from pct percent of the data at each end of the training
set� It is left to the user to have the boundary data at the boundaries of the set�

function E � knnloo�k� Xdata� Ydata� pct�

�P N� � size�Xdata� �

�T I� � sort�dist��Xdata�� � �� Sorted square distances

E � � �

imin � � � round�pct�N� �

imax � N 
 round�pct�N� �

for i � imin	imax

Yhat � sum� Ydata�	� I��	�k���� i��� �� � k �

E � E � �Ydata�	� i� 
 Yhat�� � �Ydata�	� i� 
 Yhat� �

end

E � E � �imax 
 imin � �� �

The function dist� on line � corresponds to the square distance matrix calculation�
The detail of the calculation can be found in the kernel smoothing implementation
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Figure B��� LOO�optimal regression
curve obtained using a ��NN estimator�

�section B���� This simple implementation is rather costly� calculating and sorting
the distance matrix is already O �N� logN

�
� and the rest of the calculation is �only�

O �N�
�
�

When repeated estimation are necessary� as is the case when we tune the smoothing
parameter� the sorted distance matrix can be calculated once and for all� With sorted
data� all individual estimates �y�j are computed in a single pass over the data� The
LOO estimation for a k nearest neighbours algorithm on sorted data is thus only
O �N��

The LOO generalisation error estimate is computed for � to � neighbours in �g�
ure B��� We have here weighted the �rst and last �% of the data to  � The shape
of the curve in the �gure shows how the estimation error grows in case of under� or
over�smoothing� The LOO scheme selects � neighbours as the optimal number� The
estimation curve corresponding to this number is shown in �gure B���

B�� Variable kernel method

The reliability of the kernel estimation depends greatly on the number of data en�
compassed by the kernel� As seen above� the expected number of points encompassed
is proportional to the density� If the density is halved� so is the expected number of
points involved in the estimation� For the motorcycle data� the empirical density is
plotted on �gure B��� It explains why the performance of the kernel smoother �e�g�
�gure B�� � is poor on the second half of the estimation�

A pleasant alternative is o�ered by variable kernel methods� which are a hybrid
between kernel smooth and k�NN� The idea is to locally modify the size of the
kernel in order to keep a fair number of data in the estimation� Let us recall the set
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Vk �x� of the k nearest neighbours of x� The weight sequence is given by�

Wki �x� � K �d�x�

�
x� x�i�

�
�B���

where the setting of �d �x� depends on the neighbourhood Vk �x�� A popular �and
convenient� setting is�

�d �x� �
�

k

X
l�Vk�x�

���x� x�l�
��� �B���

where � is a constant deciding on the ratio between the kernel size and the average
distance of the k nearest neighbours to the current estimation point� In this setting�
two types of optimisation are possible�

�� Setting � to a �meaningful� value� such as �� and optimising the number k of
neighbours� � � � means that the average neighbour will be situated at one
standard deviation� i�e� around the steepest slope of the Gaussian�

�� Optimising � with k �xed� k can be taken as a portion of the total number of
data� e�g� half or a quarter�

In the �rst case� we perform a discrete optimisation� in a manner similar to the tuning
of the number of neighbours in k�NN� In the second case� we perform a continuous
optimisation� Furthermore� it is easy to derive the expression of the derivative of the
LOO error �B��� with respect to ��

�ELOO

��
�

�

N

NX
j��

�
�y�j � y�j�

�X
i ��j

�
y�i� � �y�j

� �K �d

�
x�j� � x�i�

�
��X

i��j
K �d

�
x�j� � x�i�

� �B�� �
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where it should be noted that the the sum in the numerator in �B�� � is calculated
during the evaluation of �y�j� The derivative of the kernel weight with respect to �
for a Gaussian Kernel is�

�K �d

�
x�j� � x�i�

�
��

�

���x�j� � x�i�
����

� �d�
K �d

�
x�j� � x�i�

�
�B����

B��� Variable metric method

The estimation is also greatly improved by using a variable metric scheme� Both
k�NN and kernel smoother rely on a metric to estimate either the proximity of a
point� or its contribution to the smoothing� Let us de�ne a generic metric based on
a matrix D� The squared distance between the data point x�i� and the estimation
point x is� ���x�i� � x

����
D

�
�
x�i� � x

��
D
�
x�i� � x

�
�B����

If D � IP the identity matrix� we have the Euclidian distance� When D is the
diagonal matrix of inverse variances on each component of the input space� we have
a scaling distance� The distance is important as some components of the input
might typically be less important �regardless of their variance� than others� E�g� if
an input is just random noise� it will nevertheless in�uence the distance calculation�
with possibly harmful side�e�ects�

The variable metric method parameterises the diagonal elements of the distance
matrix�

D �

�					

��  � � �  

 ��
� � �

���
���

� � �
� � �  

 � � �  �P

������ �B����

and optimises the P distance coe�cients�over the LOO error� This is possible as
the derivative of the LOO generalisation estimate with respect to each distance
coe�cient is easily calculated�

�ELOO

�k
�

�

N

NX
j��

�
�y�j � y�j�

�X
i��j

�
y�i� � �y�j

� �Kd

�
x�j� � x�i�

�
�kX

i��j
Kd

�
x�j� � x�i�

� �B����

The derivation of the weight sequence with respect to the distance coe�cient depends
on whether the kernel size is �xed or variable as in section B�� � For a �xed setting�

�Kd

�
x�j� � x�i�

�
�k

� �
k
�
x
�j�
k � x

�i�
k

��
d�

Kd

�
x�j� � x�i�

�
�B����

�Many other forms are possible for the distance coe�cients� This one is especially convenient as
it insures both that the coe�cient will stay positive� and that it can be driven to � if necessary�
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Figure B��
� LOO�optimal regression
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In the case of a variable kernel given by �B���� the derivative turns into�

�K �d

�k
�

�	
�
���x�j� � x�i�

����
D

k �d

X
l�V 	j


k

�B�
�
x
�j�
k � x

�l�
k

����x�j� � x�l�
��
D

�CA� �x�j�k � x
�i�
k

���� kK �d

�d�
�B����

where V
�j�
k is Vk

�
x�j�

�
�

B��� Tuning by minimisation

The smoothing parameter is similar in spirit in both k�NN and kernel smoothing�
However� it takes discrete values in the case of k�NN� and continuous values for
the kernel smoother� The LOO is thus a real function of a discrete or continuous
variable�

For a single smoothing parameter� the parameter tuning is a minimisation problem
that can be solved by the usual line minimisation algorithms� Furthermore� the error
curve is usually rather well�behaved� high and low values of the smoothing parameter
produce high errors� and their are usually few local minima� We advocate the use of
a quadratic search or a golden search in order to obtain the optimal value of d�

For ��xed�size� kernel smoothing of the motorcycle data� it takes �� iterations of
parabolic search to obtain a ��digit approximation of the kernel size that minimises
the leave�one�out error with an Epanechnikov kernel� dopt � �� ���� This LOO
estimate was computed with �% of the data left out at each end of the data set�
This parameter selection takes around � seconds on a HP �   �����

In some cases� there is more than one parameter to optimise� This is noticeably the
case for multi�dimensional input using a variable metric as explained in section B����
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In such a case� the number of parameters to optimise is equal to the input dimension�
Notice though that the LOO error is easily di�erentiated� so we are back to a non�
linear optimisation problem �cf� Chapter ���

B��� GRNN� a non�parametric connectionist model

Kernel estimators have been introduced to the neural network literature under the
name General Regression Neural Network or GRNN� The GRNN is a straightforward
application of the Nadaray�Watson estimator using Gaussian weights�

It can be seen as a neural network�oriented implementation of a kernel estimator�
basically in the form of a ��layer network� These three layers have the following roles�

�� Computation of the kernel value Kd

�
x� x�i�

�
for each x�i�� This involves a

non linear transformation depending on the kernel shape �pattern units��

�� Calculation of the numerator of �B��� and the Parzen density estimate �sum�

mation unit��

�� Final estimation �output unit��

Putting this non�parametric estimator in network form allows for a �attering com�
parison� As it re�ects a non�parametric method� no parameter estimation is neces�
sary� as opposed to a standard MLP requiring a sometimes lengthy learning proce�
dure� On the other hand� the estimation itself is undoubtedly more costly to perform�
In order to overcome this problem� a clustering version of the GRNN is proposed�
This clustering is similar to the binned version of the kernel smoothing� together
with the weighted average of rounded points� also known as WARP� Furthermore� the
leave�one�out cross�validation scheme is proposed under the name �holdout method�
in order to tune the smoothing parameter�

The interesting aspect of the GRNN is that it introduced the neural network com�
munity to classical non�parametric estimators in a relatively statistics�free manner�
It seems� though� that one might as well go back to the sources of the technique�
The non�parametric literature contains far more than the GRNN can o�er� Even by
limiting our scope to kernel smoothing� many techniques allow for interesting insight
into aspects such as model convergence� con�dence intervals on the estimation or
smoothing parameter selection� among others�

COMMENTS

B�� Application of non�parametric methods� namely k�NN and kernel smoothers�
are discussed and compared to parametric regression in e�g� chapter � and
Goutte ������ ������

B�� K nearest neighbours estimators are discussed in many forms in many sources�
H$ardle ���� � gives a good introduction and provides an interesting discus�
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sion of computational aspects� including update formulas in the sorted� one�
dimensional case�

B�� The bias and variance decomposition for the k nearest neighbours estimation
is due to Lai ������� cited by H$ardle ���� ��

B�� The K nearest neighbours algorithm is implemented in the KTools package
discussed in the appendix�

B�� The Parzen kernel density estimator is due to Parzen ������� A thorough
presentation of kernel smoothers is given by H$ardle ���� ��

B�	 Proposition B�� can be found in Mack ������� The formulation given there
encompasses all kernel shapes� but we felt compelled to limit ourselves to one
kernel type for the sake of clarity�

B�� The kernel smoothing algorithm is implemented in the KTools package dis�
cussed in the appendix�

B�� Selection of the smoothing parameter and cross�validation have been pioneered
by Grace Wahba� The leave�one�out and cross�validation methods are discussed
here in sections ��� and ���� The estimation technique used in the context of
this chapter is di�erent� but the idea is entirely similar�

B�� The leave�one�out error estimates are implemented for k�NN and kernel smoothers
�with various kernels� in the KTools package discussed in the appendix� Both
basic and improved versions are available�

B��� A variable kernel method based on a parameterised metric was proposed
by Lowe ������� who uses a conjugate gradient method to optimise the pa�
rameters�

B��� Tuning by minimisation uses the optimisation techniques reviewed in chapter ��
both for one�dimensional� and multi�dimensional� �rst�order methods�

B��� The term GRNN was coined by Specht ������� It is interesting to note that the
same author was involved with non�parametric estimation in the sixties before
applying the method to neural models� The Parzen kernel density estimator is
due to Parzen �������
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