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Abstract

This paper provides an overview over the most common neural network types for

time series processing� i�e� pattern recognition and forecasting in spatio�temporal

patterns� Emphasis is put on the relationships between neural network models

and more classical approaches to time series processing� in particular� forecasting�

The paper begins with an introduction of the basics of time series processing� and

discusses feedforward as well as recurrent neural networks� with respect to their

ability to model non�linear dependencies in spatio�temporal patterns�

� Introduction

The world is always changing� Whatever we observe or measure � be it a
physical value such as temperature or the price of a freely traded good � is
bound to be di�erent at di�erent points in time� Classical pattern recogni�
tion� and with it a large part of neural network applications� has mainly been
concerned with detecting systematic patterns in an array of measurements
which do not change in time �static patterns�� Typical applications involve
the classi�cation of input vectors into one of several classes �discriminant
analysis�� or the approximate description of dependencies between observ�
ables �regression�� When changes over time are also taken into account�
an additional� temporal dimension is added� Although to a large extent
such a problem can still be viewed in classical pattern recognition terms�
several additional important aspects come into play� The �eld of statistics
concerned with analysing such spatio�temporal data �i�e� data that has a
spatial and temporal dimension� is usually termed time series processing�
This paper aims at introducing the fundamentals of using neural net�

works for time series processing� As a tutorial article it naturally can only

�



scratch the surface of this �eld and leave many important details untouched�
Nevertheless� it provides an overview of the most relevant aspects which
form the basis of work in this �eld� Throughout the paper� references are
given as a guide to further� more detailed literature� Basic knowledge about
neural networks� architectures� and learning algorithms is assumed�

� Time series processing

��� Basics

In formal terms� a time series is a sequence of vectors� depending on time t	

�x�t�� t 
 �� �� ��� ���

The components of the vectors can be any observable variable� such as� for
instance

� the temperature of air in a building

� the price of a certain commodity at a given stock exchange

� the number of births in a given city

� the amount of water consumed in a given community

Theoretically� �x can be seen as a continuous function of the time variable t�
For practical purposes� however� time is usually viewed in terms of discrete
time steps� leading to an instance of �x at every end point of a � usually
�xed�size � time interval� This is why one speaks of a time sequence or
series� The size of the time interval usually depends on the problem at
hand� and can be anything from millseconds� hours to days� or even years�
In many cases� observables are available only at discrete time steps �e�g�

the price of a commodity at each hour� or day� naturally giving rise to a
time series� In other cases �e�g� the number of births in a city�� values
have to be accumulated or averaged over a time interval �e�g� to lead to the
number of births per month� to obtain the series� In domains where time is
indeed continuous �e�g� when temperature in a given place is the observable�
one must measure the variable at points given through the chosen time
interval �e�g� measuring the temperature at every full hour� to obtain a
series� This is called sampling� The sampling frequency� i�e� the number
of points measured resulting from the chosen time interval� is a crucial
parameter in this case� since di�erent frequencies can essentially change the
main characteristics of the resulting time series�



It should be noted that there is another �eld very closely related to time
series processing� namely signal processing� Examples are speech recogni�
tion� detection of abnormal patterns in electrocardiograms �ECGs�� or the
automatic staging of sleep�electroencephalograms �EEGs�� A signal� when
sampled into a sequence of values at discrete time steps� constitutes a time
series as de�ned above� Thus there is no formal distinction between signal
and time series processing� Di�erences can be found in the type of prevalent
applications �e�g� recognition or �ltering in signal processing� forecasting in
time series processing�� the nature of the time series �the time interval in
a sampled signal is usually a fraction of a second� while in time series pro�
cessing the interval often is from hours upwards��� etc� But this is only an
observation in terms of prototypical applications� and no clear boundary
can be drawn� Thus� time series processing can pro�t from exploring meth�
ods from signal processing� and vice versa� An overview of neural network
applications in signal processing can be found� among others� in ��� �����

If the vector �x contains only one component� which is the case in many
applications� one speaks of a univariate time series� otherwise it is a multi�
variate one� It depends very much on the problem at hand whether a uni�
variate treatment can lead to results with respect to recognizing patterns
or systematicities� If several observables in�uence each other � such as the
air temperature and the consumption of water � a multivariate treatment
� i�e� an analysis based on several observables �more than one component
in �x� � would be indicated� In most of the discussions that follow I will
nevertheless concentrate on univariate time series processing�

��� Types of processing

Depending on the goal of time series analysis� the following typical applica�
tions can be distinguished	

�� forecasting of future developments of the time series

�� classi�cation of time series� or a part thereof� into one of several classes

�� description of a time series in terms of the parameters of a model

�� mapping of one time series onto another

Application type � is certainly the most wide�spread and imminent in
literature� From econometrics to energy planning a large number of time
series problem involve the prediction of future values of the vector �x �
e�g� in order to decide upon a trading strategy or in order to optimize

�The latter reference is given as one example of an IEEE proceedings series� resulting

from an annual conference on neural networks for signal processing�



production� Formally� the problem is described as follows	 Find a function
F 	 Rk�n�l � Rk �with k being the dimension of �x� such as to obtain an

estimate ��x�t� d� of the vector �x at time t� d� given the values of �x up to
time t� plus a number of additional time�independent variables �exogenous
features� �i	

��x�t� d� 
 F��x�t�� �x�t� ��� � � � � ��� � � � � �l� ���

d is called the lag for prediction� Typically� d 
 �� meaning that the sub�
sequent vector should be estimated� but can take any value larger than ��
as well �e�g� the prediction of energy consumption � days ahead�� For the
sake of simplicity� I will neglect the additional variables �i throughout this
paper� We should keep in mind� though� that the inclusion of such features
�e�g� the size of the room a temperature is measured in� can be decisive in
some applications�
Viewed this way� forecasting becomes a problem of function approxi�

mation� where the chosen method is to approximate the continuous�valued
function F as closely as possible� In this sense� it can be compared to func�
tion approximation or regression problems involving static data vectors�
and many methods from that domain can be applied here� as well �see� for
instance� ���� for an introduction�� This observation will turn out to be
important when discussing the use of neural networks for forecasting�
Usually the evaluation of forecasting performance is done by comput�

ing an error measure E over a number of time series elements� such as a
validation or test set	

E 

NX
i��

e���x�t� i�� �x�t� i�� ���

e is a function measuring a single error between the estimated �forecast� and
actual sequence element� Typically� a distance measure �Euclidean or other�
is used here� but depending on the problem� any funtion can be used �e�g� a
function computing the cost resulting from forecasting �x�t�d� incorrectly��

In many forecasting problems� the exact value of ��x�t�d� is not required�
only an indication of whether �x�t � d� will be larger �rising� or smaller
�falling� than �x�t�� or remain approximately the same� If this is the case�
the problem turns into a classi�cation problem� mapping the sequence �or
a part thereof� onto the classes rising or falling �and perhaps constant��
In more general terms� classi�cation of time series �application type �

above� can be expressed as the problem of �nding a function Fc 	 Rk�n�l �

Bk assigning one out of several classes to a time series	

Fc 	 ��x�t�� �x�t� ��� � � � � ��� � � � � �l�� �ci � C ���



where C is the set of available class labels� Formally� there is no essential
di�erence to the function approximation problem �equation ��� In other
words� classi�cation can be viewed as a special case of function approxima�
tion� where the function to be approximated maps continuous vectors onto
binary�valued ones� A di�erence comes from the way in which the problem
is viewed �i�e� a separation of vectors is sought rather than an approxima�
tion of the dependencies between them� � which can have an in�uence on
what method to derive the function is used � and from the way performance
is evaluated� Typically� an error function takes on the form

E 
 ��
�

N

NX
i��

��ci�ci ���

expressing the percentages of inputs whch are not correctly assigned the
desired class� �ij is the Kronecker symbol� i�e� �ij 
 � i� i 
 j� and �
otherwise� ci is the known class label of input i� Again� this distinction
between approximation �regression� and classi�cation �discrimination� is the
same as in pattern recognition of vectors without temporal dimension� Thus�
a large number of results and methods from that domain can be used for
time series classi�cation� as well� Another di�erence in the domain of time
series processing is that classi�cation �with the exception of a classi�cation
into rising�falling� usually is retrospective � i�e� there is no time lag for the
estimated output � rather than prospective �forecast into the future��
Application type � � modeling of time series � is implicitly contained in

most instances of � �forecasting� and � �classi�cation�� The function F in
equation � can be considered as a model of the time series which is capable
of generating the series� by successively substituting inputs by estimates� To
be useful� a model should have fewer parameters �degrees�of�freedom in the
estimation of F� than elements in the time series� Since the latter number is
potentially in�nite� this basically means that the function F should depend
only on a �nite and �xed number of parameters �which� as we will see
below� does not mean that it can only depend on a bounded number of past
sequence elements�� Besides its use in forecasting and classi�cation� a model
can also be used as a description of the time series� its parameters being
viewed as a kind of features of the series� which can be used in a subsequent
analysis �e�g� a subsequent classi�cation� together with time�independent
features�� This can be compared with the process of modeling with the aim
of compressing data vectors in the purely spatial domain �e�g� by realising
an auto�associative mapping with a neural network� �����
Finally� while modeling is a form of mapping a time series onto itself �i�e�

�nding model parameters based on the time series in order to reproduce
the series�� the mapping of one time series onto another� di�erent� one
is conceivable as well �application type ��� A simple example would be



forecasting the value of one series �e�g� the price of oil� given the values
of another �e�g� interest rates�� More complex applications could involve
the separate modeling of two time series and �nding a functional mapping
between them� Since in its simplest form� mapping between time series is a
special case of mulivariate time series processing �discussed above�� and in
the more complex case it is not very common� this application type will not
be discussed further� State�space models� however �to be discussed below��
can be viewed in this context�
In what follows� I will mainly discuss forecasting problems� while keeping

in mind that the other application types are very closely related to this type�

��� Stochasticity of time series

The above considerations implicitly assume that theoretically an exact model
of a time series can be found �i�e� one that minimizes the error measure to
any desired degree�� For real�world applications� this assumption is not re�
alistic� Due to measuring errors and unknown or uncontrollable in�uencing
factors� one almost always has to assume that even the most optimal model
will lead to a residual error � which cannot be erased� Usually� this error is
assumed to be the result of a noise process� i�e� produced randomly by an
unknown source� Therefore� equation � has to be extended as following	

�x�t� d� 
 F��x�t�� �x�t� ��� ���� � ���t� ���

This noise ���t� cannot be included into the model explictly� However� many
methods assume a certain characteristic of the noise �e�g� Gaussian white
noise�� the main describing parameters of which �e�g� mean and standard
deviation� can be included in the modeling process� By doing this in fore�
casting� for instance� one cannot only give an estimate of the forecast value�
but also an estimate of how much this value will be disturbed by noise� This
is the focus of so�called ARCH models ���

��� Preprocessing of time series

In only a few cases it will be appropriate to use the measured observables
immediatly for processing� In most cases� it is necessary to pre�analyze�
as well as preprocess the time series to ensure an optimal outcome of the
processing� One one hand� this has to do with the method employed� which
can usually extract only certain kinds of systematicities �i�e� usually those
that are expressed in terms of vector similarities�� On the other hand�
it is necessary to remove known systematicities which could hamper the
performance� An example are clear �linear or non�linear� trends� i�e� the
phenomenon that the average value of sequence elements is constantly rising



Figure �	 A time series showing a close�to�linear falling trend� The series
consists of tick�by�tick currency exchange rates �Swiss franc � US��� Source	
ftp	��ftp�cs�colorado�edu�pub�Time�Series�SantaFe

or falling �see �gure �� taken from ����� By replacing the time series �x�t�
with a series �x��t�� consisting of the di�erences between subsequent values�

�x��t� 
 �x�t�� �x�t� �� ���

a linear trend is removed �see �gure ��� This di�erencing process corre�
sponds to di�erentiation of continuous functions� Similarly� seasonalities�
i�e� periodic patterns due to a periodic in�uencing factor �e�g� day of the
week in product sales�� can be eliminated by computing the di�erences be�
tween corresponding sequence elements	

�x��t� 
 �x�t�� �x�t� s� ���

�e�g� s 
 � if the time interval are days� and corresponding days of the week
show similar patterns��
Identifying trends and seasonalities� when they are a clearly visible prop�

erty of the time series� lead to prior knowledge about the series� Like for any
statistical problem� such prior knowledge should be handled explicitely �by
di�erencing� and summation after processing to obtain the original values��
Otherwise any forecasting method will mainly attempt to model these per�
spicuous characteristics� leaving little or no room for the more �ne�grained
characteristics� �Thus a naive forecaster� e�g� �forecast today�s value plus a
constant increment� will probably fare equally well�� For non�linear trends�
usually a parametric model �e�g� an exponential curve� is assumed and
etsimated� based on which an elimination can be done� as well�
Another reason for eliminating trends and seasonalities �or� for that mat�

ter� any other clearly visible or well�known pattern� is that many methods



Figure �	 The time series from the previous �gure� after di�erencing

require stationarity of the time series �more on this below��

� Neural nets for time series processing

Several authors have given an overview of di�erent types of neural networks
for use in time series processing� ���� for instance� distinguishes di�erent
neural networks according to the type of mechanism to deal with temporal
information� Since most neural networks have previously been de�ned for
pattern recognition in static patterns� the temporal dimension has to be
supplied in an appropriate way� ��� distinguishes the following mechanisms	

� layer delay without feedback �or time windows�

� layer delay with feedback

� unit delay without feedback

� unit delay with feedback �self�recurrent loops�

��� bases his overview on a distinction concerning the type of memory	
delay �akin to time windows and delays�� exponential �akin to recurrent
connections� and gamma �a memory model for continuous time domains��
I would like to give a slightly di�erent overview� Given the above dis�

cussion of time series processing� the use of neural networks in this �eld
can mainly be seen in the context of function approximation and classi��
cation� In the following� the main neural network types will be introduced
and discussed along more traditional ways of sequence processing�
Other introductions can be found in ���� ���� ���� and ���� Extensive

treatments of neural networks for sequence processing are the book by ���



� Mulilayer perceptrons and radial basis

function nets� autoregressive models

Among the most wide�spread neural networks are feedforward networks for
classi�cation and function approximation� such as multilayer perceptrons
�MLP� hidden units with sigmoidal transfer functions� ���� and radial basis
function networks �RBFN� hidden units using a distance propagation rule
and a Gaussian� or other� transfer functions� ���� Both network types have
been proven to be universal function approximators �see ��� ��� for the
MLP� and ��� ��� for the RBFN�� This means that they can approximate
any reasonable function F��p� 	 Rn �Rm arbitrarily closely by

F
MLP ��p� 


�
� kX
j��

vjl��
nX
i��

wijpi � �j�� �l

�
A � l 
 ���m ���

� where � is the sigmoid function �or any other non�linear� non�polynomial
function�� k is the number of hidden units� vjl and wij are weights� and �i
are thresholds �biases� � or by

F
RBF ��p� 


�
� kX
j��

vjl��
nX
i��

�wij � pi�
��� �l

�
A � l 
 ���m ����

where � is the Gaussian function� provided k is su ciently large� Approxi�
mation of non�linearity is done by a superposition of several instances of the
basis function �e�g�� sigmoid or Gaussian�� With a �xed number of hidden
units �as is the case in most neural network applications� the method could
be called a semi�parametric approximation of functions	 It does not make
speci�c assumptions about the shape of the function �as would a parametric
method�� but it cannot approximate any arbitrarily complex function �as
could a non�parametric techniqu� note that we assumed a �xed number of
hidden units� while the above proofs require an arbitrarily large number of
units� not �xed beforehand� � see� for instance� ��� or ���
From this observation� MLPs and RBFNs o�er a straight�forward exten�

sion to a wide�spread classical way of modeling time series	 linear autore�
gressive models� Linear autoregresive time series modeling �see ��� assumes
the function F in equation � to be a linear combination of a �xed number
of previous series vectors�� Including the noise term ��

x�t� 

pX
i��

�ix�t� i� � ��t� ����

�for simpli�cation� a univariate series is assumed� by replacing the vectors �x with

scalars x




 FL�x�t� ��� � � � � x�t� p�� � ��t� ����

If p previous sequence elements are taken� one speaks of an ARp� model
of the time series �autoregressive model of order p�� Finding an appro�
priate ARp� model means choosing an appropriate p and estimating the
coe cients �i� e�g� through a least squares optimization procedure �see ��
for an extensive treatment of this topic�� This technique� although rather
powerful� is naturally limited� since it assumes a linear relationship among
sequence elements� Most importantly� it also assumes stationarity of the
time series� meaning that the main moments �mean� standard deviation� do
not change over time �i�e� mean and standard deviation over a part of the
series are independent of where in the series this part is extracted��
It becomes clear from equations � and �� �or �� and ��� respectively�

that an MLP or RBFN can replace the linear function FL in equation �� by
an arbitrary non�linear function FNN �with NN being eitherMLP or RBF�	

x�t� 
 FNN�x�t�� � � � � x�t� p�� � ��t� ����

This non�linear function can be estimated based on samples from the series�
using one of the well�known learning or optimization techniques for these
networks �e�g� backpropagation� conjugent gradient� etc��� Making FNN

dependent on p previous sequence elements is identical to using p input
units being fed with p adjacent sequence elements �see Fig� ��� This input
is usually refered to as a time window �see section ��� since it provides a
limited view on part of the series� It can also be viewed as a simple way of
transforming the temporal dimension into another spatial dimension�
Non�linear autoregressive models are potentially more powerful than lin�

ear ones in that

� they can model much more complex underlying characteristics of the
series

� they theoretically do not have to assume stationarity

However� as in static pattern recognition� they require much more care and
caution than linear methods in that they

� require large numbers of sample data� due to their large number of
degrees�of�freedom

� can run into a variety of problems� such as over�tting� sub�optimal
minima as a result of estimation �learning�� etc�� which are more severe
than in the linear case �where over�tting can come about by chossing
too high a value for the parameter p� for instance�
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Figure �	 A feedforward neural net with time window as a non�linear AR
model

� do not necessarily include the linear case in a trivial way

Especially the �rst point is important for many real�world applications
where only limited data is available� A linear model might still be preferable
in many cases� even if the dependencies are non�linear� The second point
concerns the learning algorithm employed� Backpropagation very often is
not the most appropriate choice to obtain optimal models�
Examples of feedforward neural networks in forecasting are �� ��� ��� ���

and numerous other papers in ��� and �����

��� Time�delay neural networks

Another mechanism to supply neural networks with �memory� to deal with
the temporal dimension is the introduction of time delays on connections�
In other words� through delays� inputs arrive at hidden units at di�erent
points in time� thus being �stored� long enough to in�uence subsequent in�
puts� This approach� called a time�delay neural network �TDNN� has been
extensively employed in speech recognition� for instance� by ���� Formally�
time delays are identical to time windows and can thus be viewed as au�
toregressive models� as well� An interesting extension is the introduction of
time delays also on connections between hidden and output units� providing
additional� more �abstract� memory to the network�

� �Jordan� nets� moving average models

An alternative approach to modeling time series is to assume the series being
generated through a linear combination of q �noise� signals �see� again� ���	

�This� again� is one example of a proceedings series� resulting from the annual con�

ference �Neural Networks and the Capital Markets�� providing an excellent overview of

work on forecasting with neural networks in the �nancial domain�



x�t� 
 �

qX
i��

	i��t� i� � ��t� ����


 FL���t� ��� � � � � ��t� q�� � ��t� ����

This is refered to as a moving average �or MAq�� model ��of order q��� The
approach seems paradoxical at �rst	 a non�random time series is modeled
as the linear combination of random signals� However� when viewing the
linear combination as a discrete �lter of the noise signal� the MAq� model
can be viewed as thus	 A noise process usually has a frequency spectrum
containing all or a large number of frequencies ��white� noise�� A �lter �
like the MAq� model � can thus cut out any desired frequency spectrum
�within the bounds of linearity�� leading to a speci�c� non�random time
series�
A combination of AR and MA components is given in the so�called

ARMAp�q� model	
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 FL�x�t� ��� � � � � x�t� p�� ��t� ��� � � � � ��t� q�� � ��t� ����

MAq� and ARMAp�q� models� like ARp� models� are again rather limited
given their linearity� and also their requirement of stationarity� Thus� an
extension to the non�linear case using neural networks seems appropriate
here� as well� ��� introduce such a possibility� The most important question
to answer is this	 What values of �i should be taken! A common approach
in MA modeling is to use the di�erence between actual and estimated �fore�
cast� value as an estimate of the noise term at time t� This is justi�ed by
the following observation� Assume that the model is already near�optimal in
terms of forecasting� Then the di�erence between forecast and actual value
will be close to the residual error � the noise term in equation �� Thus� this
di�erence can be used as an estimate �� for the noise term � in equation ���

���t� 
 x�t�� �x�t� ����

Figure � depicts a neural network realizing this assumption for the univari�
ate case ���� The output of the network� which is identical to the estimate
of �x�t� ��� is fed back to an additional input layer� each unit of which also
receives a negative version of the corresponding actual value x�t��� �avail�
able at the subsequent time step� to form the desired di�erence� If a time
window �or time delay at the input layer� is introduced� as well� the network
forms an arbitrarily non�linear ARMAp�q� model of the time series	
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Figure �	 A neural network with output layer feedback� realizing a non�
linear ARMA model�

x�t� 
 FNN�x�t� ��� � � � � x�t� p�� ���t� ��� � � � � ���t� q�� � ��t� ����

Simliar observations as with respect to the non�linear ARp� model in section
�� must be made� As a non�linear model� the network is potentially more
powerful than traditional ARMA models� However� this must again be
considered with care� due to the large numbers of degrees�of�freedom and
the potential limitations of the learning algorithms� A further complication
comes from the fact that at the beginning of the sequence� no estimates �x
are available� One possible way to overcome this problem is to start with �
values and update the network until su cient estimates are computed� This
requires a certain number of cycles before the learning algorithm can be
applied� �wasting� a number of sequence elements which cannot be used for
training� This is especially important when one wants to randomize learning
by always choosing an arbitrary window from the time series� instead of
stepping thorugh the series sequentially�
The network in �gure � can be considered a special case of the recurrent

network type in �gure �� usually called Jordan network after ���� It consists
of a multilayer perceptron with one hidden layer and a feedback loop from
the output layer to an additional input �or context� layer� In addition� ���
introduced self�recurrent loops on each unit in the context layer� i�e� each
unit in the context layer is connected with itself� with a weight vi smaller
than �� Without such self�recurrent loops� the network forms a non�linear
function of p past sequence elements and q past estimates	

�x�t� 
 FNN�x�t� ��� � � � � x�t� p�� �x�t� ��� � � � � �x�t� q�� ����

The non�linear ARMAp�q� model discussed above can be said to be implic�
itly contained in this network by reformulating equation �� �with the help
of equation � and �p 
 �x�t� ��� � � � � x�t� p�� �x�t� ��� � � � � �x�t� q�� as
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Figure �	 The �Jordan� network�
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provided� p 
 q �a similar derivation can be made for q 
 p�� However�
conventional learning algorithms for MLPs cannot trivially recogize di�er�
ences between input values �in terms of them being the relevant invariances��
Therefore� the explicit calculation of the di�erences in �gure � can be viewed
as the inclusion of essential pre�knowledge and thus the above network seems
to be more well�suited for the implementation of a clean non�linear ARMA
model� Nevertheless� the Jordan network can also be used for time series
processing� extending the ARMA family of models by one realizing a func�
tional dependency between sequence elements and estimates one one hand�
and the to�be�forecast value on the other� Examples of applications with
�Jordan� networks are ��� ����
The self�recurrent loops in the Jordan network are another deviation of

the standard ARMA�type of models� With their help� past estimates are
superimposed onto each other in the following way	

aCi �t� 
 f�aCi �t� �� � vi�xi�t� ��� ����

where f is the activation function� typically a sigmoid� This means that
the activations aCi of the units in the context layer are recursively com�
puted based on all past estimates �x� In other words� each such activation
is a function of all past estimates and thus contains information about a
potentially unlimited previous history� This property has often given rise
to the argument that recurrent networks can exploit information beyond a
limited time window �p or q past values�� However� in practice this cannot
really be exploited� If vi is close to �� the unit �if it uses a sigmoid transfer



function� quickly saturates to maximum activation� where additional inputs
have little e�ect� If vi 

 �� the in�uence of past estimates quickly goes to �
through several applications of equation ��� So� in fact� context layers with
self�recurrent loops are also rather limited in representing past information�
In addition� �exibility in including past information is paid by the loss of
explicitness of that information� since past estimates are accumulated into
one activation value�
Another way of employing self�recurrent loops will be discussed below�

� Elman networks and state space models

Another common method for time series processing are so�called �linear�
state space models ���� The assumption is that a time series can be de�
scribed as a linear transformation of a time�dependent state � given through
a state vector �s	

�x�t� 
 C�s�t� � ���t� ����

where C is a transformation matrix� The time�dependent state vector is
usually also desribed by a linear model	

�s�t� 
 A�s�t� �� �B���t� ����

where A and B are matrices� and ���t� is a noise process� just like ���t� above�
The model for the state change� in this version� is basically an ARMA����
process� The basic assumption underlying this model is the so�calledMarkov
assumption� meaning that the next sequence element can be predicted by
the state a system producing a time series is in� no matter how the state was
reached� In other words� all the history of the series necessary for producing
a sequence element can be expressed by one state vector� Since this vector
��s� is continuous�valued� all possible state vectors form a Euclidean vector
space in Rn� This model ��� can be viewed as a time series modeled in
terms of another one �related to the mapping between time series discussed
in section �����
If we further assume that the states are also dependent on the past

sequence vector �an assumption� which is common� for instance� in signal
processing � see ����� and neglect the moving average term B���t�	

�s�t� 
 A�s�t� �� �D�x�t� �� ����

then we basically obtain an equation describing a recurrent neural network
type� known as Elman network �after ����� depicted in �gure �� The Elman
network is an MLP with an additional input layer� called the state layer�
receiving as feedback a copy of the activations from the hidden layer at
the previous time step� If we use this network type for forecasting� and



copy

Figure �	 The �Elman� network as an instantiation of the state�space model�

equate the activation vector of the hidden layer with �s� the only di�erence
to equation �� is the fact that in an MLP a sigmoid activation function is
applied to the input of each hidden unit	

�s�t� 
 ��A�s�t� �� �D�x�t� ��� ����

where ���a� refers to the application of the sigmoid �or logistic� function
�����exp��ai�� to each element ai of �a� In other words� the transformation
is not linear but the application of a logistic regressor to the input vectors�
This leads to a restriction of the state vectors to vectors within a unit cube�
with non�linear distortions towards the edges of the cube� Note� however�
that this is a very restricted non�linear transformation function and does
not represent the general form of non�linear state space models �see below��
The Elman network can be trained with any learning algorithm for

MLPs� such as backpropagation or conjugent gradient� Like the Jordan net�
work� it belongs to the class of so�called simple recurrent networks �SRN�����
Even though it contains feedback connections� it is not viewed as a dynam�
ical system in which activations can spread inde�nitly� Instead� activations
for each layer are computed only once at each time step �each presentation
of one sequence vector��
Like above� the strong relationship to classical time series processing can

be exploited to introduce �new� learning algorithms� For instance� in ���
the Kalman �lter algorithm� developed for the original state space model is
applied to general recurrent neural networks�
Similar observations can be made about the Elman recurrent network as

with respect to the Jordan net	 Here� too� a number of time steps is needed
until � after starting with � activations � suitable activations are available
in the state layer� before learning can begin� Standard learning algorithms
like backpropagation� although easy to apply� can cause problems or lead to
non�optimal solutions� Finally� this type of recurrent net also cannot really
deal with an arbitrarily long history� for similar reasons as above �see� for
instance� ��� cited in ��� or ����� Examples of applications with �Elman�
networks are ��� ��� ����
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Figure �	 An extension of the �Elman� network as realization of a non�linear
state�space model

As hinted upon above� a general non�linear version of the state space
model is conceivable� as well� By replacing the linear transformation in
equations �� and �� by an arbitrary non�linear function� one obtains

�x�t� 
 F���s�t�� � ���t� ����

�s�t� 
 F���s�t� ��� � ���t� ����

Like in the previous sections on non�linear ARMA models� these non�linear
functions F� and F� could be modeled by an MLP or RBFN� as well� The
resulting network is depicted in �gure �� An example of the application of
such a network is ����

��� Multi�recurrent networks

���� and ���� has given an extensive overview of additional types of recur�
rencies� time�windows and time delays in neural networks� By combining
several types of feedback and delay one obtains the general multirecurrent
network �MRN�� depicted in �gure �� First� feedback from hidden and out�
put layers are permitted� From the discussions in sections �� � and � it
becomes clear that his can be viewed as a state space model� where the
state transition is modeled as a kind of ARMA���� process� reintroducing
the B���t� term in equation ��� This view is not entirely correct� though�

Using the estimates ��x as additional inputs implicitly introduces estimates
for the noise process ��t� in equation ��� and not for ��t� in equation ���
Secondly� all input layers �the actual input� the state and the context

layer� are permitted to be extended by time�delays� such as to introduce time
windows over past instances of the corresponding vectors� This essentially
means that the involved processes are ARp� and ARMAp�q�� respectively�
with p and q larger than ��
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Figure �	 The multi�recurrent network from Ulbricht �������

Thirdly� like in the Jordan network� self�recurrent loops in the state
layer can be introduced� The weights of these loops� and the weights of
the feedback copies resulting from the recurrent one�to�one connections�
are chosen such as to scale the theoretically maximum input to each unit
in the state layer to �� and to give more or less weight to the feedback
connections or self�recurrent loops� respectively� If� for instance� �� " of
the total activation of a unit in the state layer comes from the hidden layer
feedback� and �� " comes from self�recurrency� the state vector will tend
to change considerably at each time step� If� on the other hand� only ��
" come from the hidden layer feedback� and �� " from the self�recurrent
loops the state vector will tend to remain similar to the one at the previous
time step� ��� speaks of �exible and sluggish state spaces� respectively� By
introducing several state layers with di�erent such weighting schemes� the
network can exploit both the information of rather recent time steps and a
kind of average of several past time steps� i�e� a longer� averaged history�
It is clear that a full��etched version of the MRN contains a very large

number of degrees�of�freedom �weights� and requires even more care than
the other models discussed above� Several empirical studies ��� ��� have
shown� however� that for real�world applications� some versions of the MRN
can signi�cantly outperform most other� more simple� forecasting methods�
The actual choice of feedback� delays and weightings still depends largely
on empirical evaluations� but similar iterative estimation algorithms as were
suggested by �� �for obtaining appropriate parameter values for ARMA
models� appear applicable here� too�
Another advantage of self�recurrent loops becomes evident in applica�

tions where patterns in the time series can vary in time scale� This phe�
nomenon is called time warping� and is especially known in speech recog�
nition� where di�erent speech patterns can vary in length and relationships
between segments dependent on speaking speed and intonation ���� In au�
toregressive models with �xed time windows� such distorted patterns lead
to vectors that do not share su cient similarities to be classi�ed correctly�
This is sometimes called the temporal invariance problem � the problem of



Figure �	 A simple network with a time�dependent weight matrix� produced
by a second neural net�

recognizing temporal patterns independent of their duration and temporal
distortion� In a state space model� implemeted as a recurrent network with
self�recurrent loops such invariances can be dealt with� especially when slug�
gish state spaces are employed� If states in the state space model are forced
to be similar at subsequent time steps� events can be treated equally �or
similarly� even when the are shifted along the temporal dimension� This
property is discussed extensively in ����

	 Neural nets producing weight matrices�

time
dependent state transitions

The original state space model approach �equations �� and ��� left open
the possibility of making all matrices A through C time�dependent as well�
This allows for the modeling of non�stationary time series and series where
the variance of the noise process changes over time� In neural network terms
this would mean the introduction of time�varying weight matrices	�
��� introduced a small neural network model that can be viewed in the

context of time�dependent transition matrices� It consist of two feedforward
networks � one mapping an input sequence onto an output� and another one
producing the weight matrix for the �rst network ��gure ��� Even though
not a state�space model but rather a AR�� model of the input sequence�
it realizes a mapping with a variable matrix �the weight matrix of the �rst
network�� This network was used to learn formal languages� such as parity
or others� A similar example can be found in ����
In this context� other approaches to inducing �nite�state automata into

neural networks should be mentioned �e�g� ����� A �nite state automaton
is another classical model to describe time series� although on a more ab�
stract level � the level of categories instead of continuous�valued input� If a
categorization process is assumed before the model is applied it can also be
used for time series as the ones discussed above� An automaton is de�ned
as a set of states �discrete and �nite� so there is no concept of state space

�By �time�varying� I mean varying on the time�scale of the series� Weight changes due

to learning are not considered here�
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Figure ��	 A �nite state automaton for modeling time series

in this model� with arcs between them corresponding to state transitions
taken dependent on the input� For instance� in �gure ��� if � starting from
the left�most state �node� � an #a� is encountered� the automaton would
jump to state �� while if a #b� is encountered� it would remain in state ��
Depending on what types of arcs emanate from a state� a prediction can
be made with respect to what input element must follow� provided that
the input is �grammatical�� i�e� corresponds to the grammar the automaton
implements� This is especially useful for sequences in speech or language�
��� have shown that a neural network can be set or trained such as

to implement such an automaton� While this concept cannot directly be
applied to real�world sequences like the ones above� it points to another
useful application of neural networks� especially when going from �nite�
discrete states to continuous state spaces� This is exactly what an Elman
network or the model by ��� realizes�

� Other topics

The story does not end here� There are many more important topics con�
cerning time series processing and the use of neural networks in this �eld�
Some topics that could not be covered here� but are of equal importance as
the ones that were� are the following�

� many time series applications are tackled with fully recurrent net�
works� or networks with recurrent architectures di�erent from the ones
discussed �e�g� ����� Special learning algorithms for arbitrary recur�
rent networks have been devised� such as backpropagation in time���
and real�time recurrent learning �RTRL�����

� many authors use a combination of neural networks with so�called
hidden Markov models �HMM� for time series and signal processing�
HMMs are related to �nite automata and describe probabilities for
changing from one state to the other� See� for instance� �� or the
treatment in ���



� unsupervised neural network learning algorithms� such as the self�
organizing feature map� can also be applied in time series processing�
both in forecasting �� and classi�cation ���� The latter application
constitutes an instance of so�called spatio�temporal clustering� i�e� the
unsupervised classi�cation of time series into clusters � in this case
the clustering of sleep�EEG into sleep stages�

� a number of authors have investigated the properties of neural net�
works viewed as dynamical systems� including chaotic attractor dy�
namics� Examples are ��� and ����

The focus of this paper was to introduce the most widely used architectures
and their close relationships to more classical approaches to time series
processing� The approaches presented herein can be viewed as starting
points for future research� since the potential of neural networks � especially
with respect to dynamical systems � is by far not fully exploited yet�

� Conclusion

As mentioned initially� this overview of neural networks for time series pro�
cessing could only scratch the surface of a very lively and important �eld�
The paper has attempted to introduce most of the basics of this domain�
and to stress the relationship between neural networks and more tradi�
tional statistical methodologies� It underlined one important contribution
of neural networks � namely their elegant ability to approximate arbitrary
non�linear functions� This property is of high value in time series processing
and promises more powerful applications� especially in the sub�eld of fore�
casting� in the near future� However� it was also emphasized that non�linear
models are not without problems� both with respect to their requirement
for large data bases and careful evaluation and with respect to limitations
of learning or estimation algorithms� Here� the relationship between neural
networks and traditional statistics will be essential� if the former is to live
up to the promises that are visible today�
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