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Abstract
Multilayer neural network has been successfully applied to the time series forecasting.  Steepest descend, a
popular learning algorithm for backpropagation network, converges slowly and has the difficulty in
determining the network parameters.  In this paper, conjugate gradient learning algorithm with restart
procedure is introduced to overcome these problems.  Also, the commonly used random weight initialization
does not guarantee to generate a set of initial connection weights close to the optimal weights leading to slow
convergence.  Multiple linear regression (MLR) provides a better alternative for weight initialization.

The daily trade data of the listed companies from Shanghai Stock Exchange is collected for technical analysis
with the means of neural networks.  Two learning algorithms and two weight initializations are compared.
The results find that neural networks can model the time series satisfactorily, whatever which learning
algorithm and weight initialization are adopted.  However, the proposed conjugate gradient with MLR weight
initialization requires a lower computation cost and learns better than steepest decent with random
initialization.

Keywords:  time series forecasting, technical analysis, learning algorithm, conjugate gradient, multiple linear regression weight
initialization, backpropagation neural network

1. Introduction
Detecting trends of stock data is a decision support
process.  Although the Random Walk Theory claims that
price changes are serially independent, traders and certain
academics[4] have observed that there is no efficient
market.  The movements of market price are not random
and predictable.

Statistical methods and neural networks are commonly used
for time series prediction.  Empirical results have shown
that Neural Networks outperform linear regression[1,18,32]
since stock markets are complex, nonlinear, dynamic and
chaotic[22].  Neural networks are reliable for modeling
nonlinear, dynamic market signals[15].  Neural Network
makes very few assumptions as opposed to normality
assumptions commonly found in statistical methods.
Neural network can perform prediction after learning the
underlying relationship between the input variables and
outputs.  From a statistician’s point of view, neural
networks are analogous to nonparametric, nonlinear
regression models.

Backpropagation neural network is commonly used for
price prediction.  Classical backpropagation adopts first-

order steepest descent technique as learning algorithm.
Weights are modified in a direction that corresponds to the
negative gradient of the error surface.   Gradient is an
extremely local pointer and does not point to global
minimum.  This hill-climbing search is in zigzag motion and
may move towards a wrong direction, getting stuck in a
local minimum.  The direction may be spoiled by
subsequent directions, leading to slow convergence.

In addition, classical backpropagation is sensitive to the
parameters such as learning rate and momentum rate. For
examples, the value of learning rate is critical in the sense
that too small value will make have slow convergence and
too large value will make the search direction jump wildly
and never converge.  The optimal values of the parameters
are difficult to find and often obtained empirically.

Customary random weight initialization does not guarantee
a good choice of initial weight values.  The random weights
may be far from a good solution or near local minima or
saddle points of the error surface, leading to a slow learning.

To overcome the deficiencies of steepest descent learning
and random weight initialization, some researches[19,29]
have investigated the use of Genetic Algorithms and
Simulated Annealing to escape local minimum.  Some[5,20]



have attempted Orthogonal Least Squares.  Some have
adopted Newton-Raphson and Levenberg-Marquardt.

In this paper, conjugate gradient learning algorithm and
multiple linear regression weight initialization are
attempted.  In next section, conjugate gradient learning
algorithm is introduced.  Section 3 mentions multiple linear
regression weight initialization.  The descriptions and the
results of experiments on the performance of both learning
algorithms and both weight initializations are reported in
section 4.   Finally, conclusion is drawn and further
research is discussed in section 5.

2. Conjugate Gradient
Learning Algorithm

The training phase of a backpropagation network is an
unconstrained nonlinear optimization problem.  The goal of
the training is to search an optimal set of connection
weights in the manner that the errors of the network output
can be minimized.

Besides popular steepest descent algorithm, conjugate
gradient algorithm is another search method that can be
used to minimize network output error in conjugate
directions.  Conjugate gradient method uses orthogonal and

linearly independent non-zero vectors.  Two vectors id
and jd  are mutually G -conjugate if
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The algorithm was firstly developed to minimize a
quadratic function of n variables
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where w  is a vector with n elements and G  is an n n×
symmetric and positive definite matrix.  The algorithm was
then extended to minimization of general non-linear
functions by interpreting (2) as a second order Taylor
series expansion of the objective function.  G in (2) is
regarded as Hessian matrix of function f.  

A starting point 1w  is selected first.  The first search

direction 1d  is set to negative gradient 1g  (i.e.

1d =- 1g ).  Conjugate gradient method is to minimize

differentiable function (2) by generating a sequence of

approximation 1+kw  iteratively according to
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α  and β  are momentum terms  to avoid oscillations.   
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The search direction can be viewed as a convex combination
of the current steepest descent direction and the direction
used in the last move.

The search distance of each direction is varied.  The value
of kα  can be determined by line search techniques, such as

Golden Search and Brent’s Algorithm, in the way that

)(f kkk dw α+  is minimized along the direction kd ,

given fixed kw  and fixed kd .

kβ  can be calculated by the following three formulae:

Hestenes and Stiefel’s formula,
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Polak and Ribiere’s formula,
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Fletcher and Reeves’ formula,
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Shanno’s inexact line search[15] considers the conjugate
method as a memoryless quasi-Newton method.  Shanno

derives a formula for computing  1+kd :

k
k

T
k

k
T
k

k
k

T
k

k
T
k

k
T
k

k
T
k

k
T
k

k
T
k

kk y
yp
gp

p
yp
gy

yp
gp

yp
yy

gd +







−








+−−= ++ 111

where 
kkk dp α=  and 
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The method performs an approximate line minimization in
a descent direction in order to increase numerical stability.

For n-dimensional quadratic problems, the solution is

converged from 0w  to *w  by n step moves along

different G -conjugate directions nddd ,...,, 21 .

However, for non-quadratic problems, G -conjugacy of the
direction vectors deteriorates.  Therefore, the direction
vector is reinitialized to the negative gradient of the current
point after every n steps.  That is,

kk gd −=      where k  = mn +1,     Nm ∈    (10)

Conjugate gradient method has a second-order convergence
property without complex calculation of the Hessian
matrix.     A faster convergence is expected than first order
steepest descent approach.  Conjugate-gradient approach
finds the optimal weight vector w along the current gradient
by doing a line-search.  It computes the gradient at the new
point and projects it onto the subspace defined by the
complement of the space defined by all previously chosen
gradients.  The new direction is orthogonal to all previous



search directions.  The method is simple.  No parameter is
involved.  It requires little storage space and expected to be
efficient.

The summary of conjugate gradient algorithm is describe
below:
1. Set k = 1. Initialize w1.
2. Compute g1 = ∇f(w1).
3. Set d1 = -g1.
4. Compute α k by line search,

where )](f[minarg kkkk dw α+=α α
.

5. Update weight vector by  wk+1 = wk+α kdk.
6. If network error is less than a pre-set minimum value

or the maximum number of iterations has been
reached, stop; else go to step 7.

7. If k+1 > n, then w1 = wk+1, k = 1 and go to step 2;
Else a) set k= k+1

b) compute gk+1 = ∇f(wk+1).

c) compute kâ .

d) compute new direction: dk+1=-gk+1+βkdk.
e) go to step 4

To compute gradient in step 2 and 7b, the objective
function is first defined.  The aim is to minimize the
network error that is dependent of the independent
connection weights.   The objective function is defined by
the error function:
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where N is the number of patterns in the training set;
w is one-dimensional weight vector in which
weights are ordered by layer and then by neuron;

njt  and )(ynj w  are the actual and desired

outputs of the j-th output neuron for n-th pattern,
respectively.

With the arguments in [34], the gradient is
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For output nodes,
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where )net(s nj
'
j  is the derivative of the activation

function of the input of the j-th neuron njnet .

For the hidden node,
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where jkw  is the weight from j-th to the k-th neuron.

3. Multiple Linear Regression
Weight Initialization

Backpropagation is a hill-climbing technique.  It runs the
risk of being trapped in local optimum.  The starting point
of the connection weights becomes an important issue to
reduce the possibility of being trapped in local optimum.
Random weight initialization does not guarantee to generate
a good starting point.  It can be enhanced by multiple linear
regression.  In this method, weights between input layer
and hidden layer are still initialized randomly but weights
between hidden layer and output layer is obtained by
multiple linear regression.

The weight ijw  between the input node i and the hidden

node j is initialized by uniform randomization.  Once input
s
ix  of sample s has been fed into the input node and ijw ’s

have been assigned values, output value 
s
jR  of the hidden

node j can be calculated as
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where f is a transfer function.  The output value of the
output node can be calculated as
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where jv  is the weight between the hidden layer and the

output layer.

Assume sigmoid function 
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1
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transfer function of the network.  By Taylor’s expansion,
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Applying the linear approximation in (17) to (16), we have
the following approximated linear relationship between the
output y and vj’s:
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where m is the number of hidden nodes;
N is the total number of training samples.

The set of equations in (19) is a typical multiple linear

regression model.  
s
jR ’s are considered as the regressors.

jv ’s can be estimated by standard regression method.

Once jv ’s have been obtained, the network initialization is

completed and the training starts.



4. Experiment
The daily trading data of eleven listing companies in 1994-
1996 was collected from Shanghai Stock Exchange for
technical analysis of stock price.  The first 500 entries were
used as training data.  The rest 150 were testing data.  The
raw data is preprocessed into various technical indicators to
gain insight into the direction that the stock market may be
going.  Ten technical indicators was selected as inputs of
the neural network: the lagging input of past 5 days’ change
in exponential moving average (∆1EMA(t-1), ∆2EMA(t-1),
∆3EMA(t-1), ∆4EMA(t-1), ∆5EMA(t-1)), relative
strength index on day t-1 (RSI(t-1)), moving average
convergence-divergence on day t-1 (MACD(t-1)),    
MACD    Signal   Line    on    day t-1 (MACD Signal
Line (t-1)), stochastic %K on day t-1 (%K(t-1)) and
stochastic %D on day t-1 (%D(t-1)).

EMA is a trend-following tool that gives an average value
of data with greater weight to the latest data.  Difference of
EMA can be considered as momentum.  RSI is an oscillator
which measures the strength of up versus down over a
certain time interval (nine days were selected in our
experiment).  High value of RSI indicates a strong market
and low value indicates weak markets.  MACD, a trend-
following momentum indicator, is the difference between
two moving average of price.  In our experiment, 12-day
EMA and 26-day EMA were used.  MACD signal line
smoothes MACD.  9-day EMA of MACD was selected
for the calculation of MACD signal line.  Stochastic is an
oscillator that tracks the relationship of each closing price
to the recent high-low range.  It has two lines: %K and %D.
%K is the “raw” Stochastic. In our experiment, the
Stochastic’s time window was set to five for calculation of
%K.  %D smoothes %K – over a 3-day period in our
experiment.

Neural network cannot handle wide range of values.  In
order to avoid difficulty in getting network outputs very
close to the two endpoints, the indicators were normalized
to the range [0.05, 0.95], instead of [0,1], before being input
to the network.   

Prediction of price change allows a larger error tolerance
than prediction of exact price value, resulting in a significant
improvement in the forecasting ability[8,10].  In order to
smooth out the noise and the random component of data,
exponential moving average of the closing price change at
day t (∆EMA(t)) was selected as the output node of the
network.  ∆EMA(t) can then be transformed to stock
closing price Pt by

)t(EMA)]t(EMA)t(EMA[
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A three-layer network architecture was used.  The required
number of hidden nodes is estimated by

No.  of hidden nodes = (M + N) / 2
where M and N  is the number of input nodes and output
nodes respectively.  In our network, there were ten input
nodes and one output node.  Hence, five hidden nodes were
used.

The following scenarios have been examined:
a. Conjugate gradient with random initialization (CG/RI)
b. Conjugate gradient with multiple linear regression

initialization (CG/MLRI)
c. Steepest descent with random initialization (SD/RI)
d. Steepest descent with multiple linear regression

initialization (SD/MLRI)
In steepest descent algorithm, the learning rate and
momentum rate was set to 0.1 and 0.5 respectively[27].  In
conjugate gradient, Golden Search was used to perform the
exact the line search of α .  According to Bazarra’s
analysis[3], Polak and Ribiere’s form was selected for the
calculation of β.  For all scenarios mentioned above, the
training is terminated when mean square error (MSE) is
smaller than 0.5%.

All the eleven company data were used for each of the
above scenario.  Each company data set ran 10 times.
Figure 1 shows a sample result from testing phase.

Fig 1a: Predicted ∆EMA(t) vs actual ∆EMA(t)     Fig 1b: Predicted stock price vs actual stock price
Figure 1:   A sample result from neural network



In figure 1a, although predicted ∆EMA(t) and  actual
∆EMA(t) have a relative great deviation in some regions,
the network can still model the actual EMA reasonably
well.  On the other hand, after the transformation of
∆EMA(t) to exact price value, the deviation between actual
price and predicted price is small.  Two curves in figure 1b
nearly coincide.  This reflects the selection of the network
forecaster was appropriate.

The performance of scenarios mentioned above is evaluated
by average number of iterations required for training,
average MSE in testing phase and the percentage of correct
direction prediction in testing phase.  The results are
summarized in Table 1.

Average
number of
iterations

Average
MSE

% of correct
direction
prediction

CG / RI 56.636 0.001753 73.055
CG / MLRI 30.273 0.001768 73.545
SD / RI 497.818 0.001797 72.564
SD / MLRI 729.367 0.002580 69.303

Table 1: Performance evaluation for four scenarios

All scenarios, except for steepest descent with MLR
initialization, achieve similar average MSE and percentage
of correct direction prediction.  All scenarios perform
satisfactory.  The mean square error produced is on average
below 0.258% and more than 69% correct direction
prediction is reached.

Conjugate gradient learning on average requires significant
less number of iterations than steepest descent learning.
Due to complexity of line search, conjugate gradient
requires a longer computation time than steepest gradient
per iteration.  However, overall convergence of conjugate
gradient neural network is still faster than steepest descent
network.

In conjugate gradient network, MLR initialization requires
less number of iterations required for training than random
initialization, achieving similar MSE and direction
prediction accuracy with random initialization.  The
positive result shows that regression provides a better
starting point for the local quadratic approximation of the
nonlinear network function performed by conjugate
gradient.

However, in steepest descent network, regression
initialization does not improve performance.  It requires
more number of iterations for training, produces a larger
MSE and fewer correct direction predictions than random
initialization.  The phenomenon is opposite to the case in
conjugate gradient network.  It is attributed to the
characteristics of the gradient descent algorithm that
modifies direction to negative gradient of error surface,
resulting in spoils of good starting point generated by MLP
by subsequent directions.

5. Conclusion & Discussion
The experimental results show that it is possible to model
stock price based on historical trading data by using a three-
layer neural network.  In general, both steepest descent
network and conjugate gradient network produce the same
level of error and reach the same level of direction
prediction accuracy.

Conjugate gradient approach has advantages of steepest
descent approach.  It does not require empirical
determination of network. As opposed to zigzag motion in
steepest descent approach, its orthogonal search prevents a
good point being spoiled.  Theoretically, the convergence of
second-order conjugate gradient method is faster than first
order steepest descent approach.  This is verified in our
experiment.

In regard to initial starting point, the experimental results
show the good starting point generated by multiple linear
regression weight initialization is spoiled by subsequent
direction in steepest descent network.  On the contrary,
regression initialization provides a good starting point,
improving the convergence of conjugate gradient learning.

To sum up, the efficiency of backpropagation can be
improved by conjugate gradient learning with multiple
linear regression weight initialization.

It is believed that the computation time of conjugate
gradient can be reduced by Shanno’s approach[7].  The
initialization scheme may be improved by estimating
weights between input nodes and hidden nodes, instead of
random initialization.  Enrichment of more relevant inputs
such as fundamental data and data from derivative markets
may improve the predictability of the network.  Finally,
more sophisticated network architectures can be attempted
for price prediction.
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