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Abstract

We have recently proposed a promising trading system for the S�P ��� index� which consists

of a feature selection component and a simple �lter for data preprocessing� two specialized neural

networks for return prediction� and a rule base for prediction integration� The objective of this

study is to explore if including additional knowledge for more sophisticated data �ltering and

return integration leads to further improvements in the system� The new system is using a

well�known technical indicator to split the data� and an additional indicator for reducing the

number of unpro�table trades� Several system combinations are explored and tested over a �ve

year trading period� The most promising system yielded an annual rate of return �ARR� of

	��

� with �� trades� This compares favorably to the ARR for the buy and hold strategy

�		����� and the best results obtained using the system with no technical analysis knowledge

embedded �	��� with 	�� trades��
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�� Introduction

The attempts to model �nancial markets phenomena in order to predict future market directions

are largely unsuccessful due to the inherent complexity of the domain� The e�cient market hypoth�

esis� tested in the economics literature over a � years period without de�nitive �ndings� claims

that the �nancial markets are random time series and consequently are unpredictable based on any

amount of publicly available knowledge� However� until recently most quantitative approaches to

testing this hypothesis were based on linear time series modeling �Black and Scholes� ��	�� White�

������ It is very hard to �nd statistically signi�cant market ine�ciencies using standard linear time

series modeling since such linear approaches are not capable of identifying dynamic or nonlinear

relationships in the historic data� However� given enough data and time� an appropriate nonpara�

metric machine learning technique may be able to discover more complex nonlinear relationships

through supervised learning from examples �Weiss� ������ The last few years have seen such new

approaches to �nancial modeling by both researchers in �nancial service companies �e�g� Mahfoud

and Mani� ���
� and universities �e�g� Hutchinson� ������

To analyze nonlinear phenomena in the stock markets this study employs multi�layer arti�cial

neural networks �Haykin� ���
�� Neural networks �NN� are powerful computational systems that

can approximate almost any nonlinear continuous function on a compact domain to any desired

degree of accuracy �Cybenko� ������ In addition� a NN can account for fundamental changes in the

underlying function through incremental retraining using the back�propagation learning algorithm�

Rumelhart et al�������� This study focuses on the United States stock market because it is one of

the most closely followed markets in the world and as such very e�cient� It is reasonable to assume

that if the system proposed in this study can �nd ine�ciencies in the U�S� stock market� it should

also be able to �nd ine�ciencies in other markets that are less closely watched and as such are

more ine�cient�
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Recently� we obtained promising results by incorporating two specialized neural networks into a

hybrid multi�component nonlinear system for the S�P 
 stock market predictions �Chenoweth

and Obradovic� ���
a�� The system was composed of a feature selection component� a �ltering

component for identifying the most relevant patterns for two specialized NNs �called the Up NN

and the Down NN� trained to predict stock market returns� and a high level decision rule component

used for determining buy�sell recommendations as a function of the two predictions obtained from

the Up and Down NNs�

This paper focuses on the pattern �lter and the buy�sell recommendation component of our

previous system� The objective is to explore whether technical analysis based preprocessing and

postprocessing improves the overall system performance� The results from this study are compared

to those achieved using the previous system� Section � gives a global description of the proposed

trading system� Details of the �ltering techniques and predicted returns integration techniques

are discussed in Sections � and �� respectively� Finally� the experimental results are presented in

Section 
 and the conclusions in Section ��

�� The Return Rate Prediction Process

In the proposed system� the trading process �described in Figure �� consists of three phases� data

preprocessing� return rate prediction� and postprocessing� For data preprocessing� this paper ex�

plores two distinct directional �ltering schemes for separating the training patterns into �up trend��

�down trend�� and �sideways� data sets� The �rst directional �lter is a previously used simple ap�

proach that separates the training patterns according to the sign of the target return for a speci�c

pattern and a prespeci�ed threshold value� The second directional �lter computes an indicator

commonly used among technical analysts to determine market direction and strength of the mar�

ket trend� Patterns covering a continuous� �xed size time segment of historic data �called a training
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window� are designated to the Up and Down training sets based on the direction of the market

trend� Section � describes the details for both schemes�

The return rate prediction is computed using two NNs �called the Up NN and the Down NN��

Both the Up and Down NN are trained using the back�propagation algorithm �Rumelhart et al��

������ and the disjoint training sets are generated in the preprocessing phase� Once both NNs are

trained� a return is predicted by both the Up and the Down NN for the time step immediately

following the training window and the predictions are integrated in the result postprocessing phase�

After a single prediction step� the training window is shifted forward by one day and the patterns

from the new window are used to retrain both NNs� and a prediction is made for the next day�

This process is repeated until the data set is exhausted�

For example� suppose that the training window size is m and at time t the test pattern is dt�

which means the training window contains patterns dt�m through dt��� First� the patterns in the

training window �dt�m through dt��� are separated into a discard set� an Up NN training set� and

a Down NN training set using one of the pattern �ltering schemes discussed in Section �� Next� the

Up and the Down NN are trained using the �up trend� and the �down trend� data sets respectively�

and asked to predict the target return for test pattern dt� Once the two predictions are collected

and sent to the integration component� the training window is shifted forward one time step� so

that the new test pattern is dt�� and the new training window contains patterns dt�m�� through

dt� and the process is repeated� This continues until the end of the ordered data set is reached�

In the postprocessing phase� the predicted returns from both the Up and the Down NN are

used to compute a buy�sell recommendation as a function of those returns� This study examines

four integration techniques� The �rst is the method used in the previous system proposed in

�Chenoweth and Obradovic� ���
a�� It uses a simple decision rule� which in essence determines

which specialized NN is �more con�dent� of it�s prediction� with the buy�sell recommendation based
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on that NN� The second integration technique is a voting system where each of the Up NN� the

Down NN� and a technical indicator vote on the market direction �i�e� up or down�� The system�s

buy�sell recommendation is based on the results of this vote� The third integration technique uses

an additional NN that acts as a combiner for the predictions of the Up and the Down NN� This

combiner NN takes the predicted returns for both the Up and the Down NN and integrates them

into a single prediction� which is used to compute the system�s buy�sell recommendation� Finally�

the fourth integration technique is an extension of the third� This technique also uses a combiner

NN� but the resulting buy�sell recommendation is �ltered using a technical indicator in an e�ort

to reduce the number of unpro�table trades� Details for all integration strategies are provided in

Section ��

�� Pattern Filtering Schemes

This section presents the details for two di�erent approaches to the preprocessing phase of the

trading system shown in Fig� ��

���� Threshold Based Directional Filter

The previous system proposed in �Chenoweth and Obradovic� ���
a� used a simple data �ltering

approach where for each training session the target return corresponding to each pattern in the

window is compared to a threshold value h�� If the return is greater than h�� the corresponding

pattern is added to the Up NN training set� if the return is less than �h� the pattern is added to

the Down NN training set� Any pattern with a target return between �h� and h� is discarded�

	



���� The ADX Based Directional Filter

The more sophisticated �ltering approach considered in this study uses the average direction index

�ADX� developed by J� W� Wilder� Jr�� in the mid���	�s and further modi�ed by several technical

analysts �Elder� ����� LeBeau and Lucas� ������ The ADX indicator identi�es trends and quanti�es

their strengths by measuring the fraction of today�s range extends above or below the previous day�s

range and averages this over a period of time� It is computed using the following algorithm�

�� Compute the positive and negative directional movements �DM� and DM�� as

DM� �

�
maxfTh � Yh� g if Th � Yh � Yl � Tl�

 otherwise�

and

DM� �

�
maxfYl � Tl� g if Th � Yh � Yl � Tl�

 otherwise�

where Th and Tl are today�s market high and low values� and Yh and Yl are yesterday�s market

high and low values� It is important to note that every day has both a DM� and a DM��

and that at most one of these two values is positive� while the other is zero� For example�

suppose today�s high and low values are �
 and � respectively and yesterday�s high and

low values are �� and �
� Since j�
� ��j � j�� �
j the DM� is � while the DM� is

zero�

�� Measure the true range �TR� as

TR � maxfjTh � Tlj� jTh � Ycj� jTl� Ycjg�

where Th� Tl� Yh and Yl are as previously de�ned and Yc is yesterday�s market closing value�
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�� Compute the smoothed directional indicators DI� and DI� as

DI� �
DM�

TR
� DI� �

DM�

TR
�

�� Compute DI�k� and DI�k� as the average DI� and DI� for the previous k� days�


� Calculate the DX or directional movement index as

DX �
jDI�

k�
� DI�

k�
j

DI�
k�

� DI�
k�

� ��

�� Finally� compute a moving average of the DX over k� previous days to create the function

Adx�k�� k���

Observe that the Adx is always between  and �� with small values indicating that the market

is moving sideways �i�e� there is no trend�� and large� or raising� values indicating that the market

has a trend� in which case the DI�k� and DI�k� for that day are compared to determine the market

direction�

In this study� two ADX indicator based rules for �ltering the data are tested� They are denoted

by ADX��k�� k�� h�� and ADX��k�� k�� h��� which means Average Direction Index rule � and �� with

parameters k�� k�� and h��

� Filtering rule ADX��k��k��h�� compares today�s Adx�k�� k�� value to a threshold value

h�� If today�s Adx�k�� k�� value is less than h� or is less than yesterday�s Adx�k�� k�� value�

the pattern is discarded� If today�s Adx�k�� k�� value is larger than h� and is larger than

yesterday�s Adx�k�� k�� value� today�s DI�k� and DI�k� are compared� If DI�k� � DI�k� � the

pattern is added to the Up NN�s training set� else the pattern is added to the Down NN�s

training set�
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� Filtering rule ADX��k��k��h�� again compares today�s Adx�k�� k�� value to a threshold h��

If either today�s Adx�k�� k�� or yesterday�s Adx�k�� k�� is below h�� the pattern is discarded�

If today�s and yesterday�s Adx�k�� k�� are above h�� then today�s DI�
k�

and DI�
k�

are compared

and the pattern is assigned to the correct training set as in �ltering rule ADX��

�� Predicted Returns Integration

This component analyzes the predicted returns obtained from the Up NN and the Down NN� and

outputs a buy�sell recommendation that is used to establish either a long or short position in the

market� A long position means purchasing an asset for later resale� while a short position means

selling a borrowed asset now and purchasing it later� Four integration strategies are examined in

this study� The �rst is the rule based strategy used earlier �Chenoweth and Obradovic� ���
a��

The second strategy is a voting method where each of the Up NN� the Down NN� and the moving

average convergence�divergence technical indicator �MACD� vote on the market direction� The

third strategy uses a combiner NN to integrate the predictions of the Up NN and the Down NN

into a single prediction� Finally� the fourth is an extension of the third strategy� which uses the

MACD indicator to verify the prediction of the combiner NN� The details of each strategy are given

in the following subsections�

���� The Rule Based Strategy

For the rule based strategy� the predicted returns from both the Up and the Down NN are used as

input to the rule based integration component as shown in Figure �� This strategy uses a simplistic

rule which is an extension of the �buy and hold� strategy meaning that if the system does not

have a strong recommendation� a long position is established� The decision rule �rst compares the

Up NN prediction ru to the Down NN prediction rd and determines a buy�sell recommendation as
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Figure �� The Rule Based Integration Strategy�

follows�

a� If ru �  and rd �  a long position in the market is established or maintained�

b� If ru �  and rd �  a short position in the market is established or maintained�

c� Otherwise� the normalized di�erence di� is computed as

di� �
maxfjruj� jrdjg �minfjruj� jrdjg

maxfjruj� jrdjg
�

and this ratio is compared to a prede�ned decision threshold value y to determine a buy�sell

recommendation as follows�

i� If ru � � rd � � di� � y� and jruj � jrdj� a short position in the market is established

or maintained�

ii� Otherwise� a long position in the market is established or maintained�

���� The Voting Integration Strategy

This strategy utilizes the MACD indicator to resolve ties between predictions suggested by the Up

and The Down NN as shown in Fig� �� The MACD indicator is a well known stock market timing

��



Up NN Down NN MACD

Buy/Sell Recommendation

Vote

Figure �� The Voting Integration Strategy�

device� originally developed in ��	� by G� Appel and e�ectively used by various traders �Elder�

������ It is comprised of two functions�

� The Macd function� composed of two moving averages� which reacts quickly to market

changes�

� The Signal function� a moving average of the Macd function�which reacts more slowly to

market changes�

The MACD based trading rule recommends a long position in the market when the value of the

Macd function is larger than the value of the Signal function and a short position when the Macd

value is smaller than the Signal value� The daily Macd and Signal values are computed using the

following algorithm�

�� Compute a moving average of the market closing prices over the ma� previous days�

�� Compute a moving average of the market closing prices over the ma� previous days� where

ma� � ma��
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�� Subtract the moving average computed over the ma� previous days from the moving average

computed over the ma� previous days� This becomes the Macd�ma�� ma�� value for the

current day�

�� Compute a moving average of the Macd values over the ma� previous days� This becomes

the Signal�ma�� ma�� ma�� value for the current day�

Using the voting integration strategy� both the Up and the Down NN are presented with the

test pattern and the predicted returns are collected� The following algorithm determines the result

of the vote�

a� If both the Up and the Down NN give a positive prediction� a long position in the market is

established or maintained�

b� If both the Up and the Down NN give a negative prediction� a short position in the market

is established or maintained�

c� If the Up and the Down NN predictions do not agree on the market direction� the MACD

is used to estimate the market direction and a market position is established or maintained

accordingly�

���� The Combiner Neural Network Integration Strategy

For this strategy the predictions from the Up and the Down NN are integrated using a third

combiner NN as shown in Fig� �� This combiner NN takes the predictions from each specialized

NN and returns a single integrated predicted return� This integrated prediction is used to determine

the trading action for that day �i�e� maintain current position or change the market position via a

trade��
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Figure �� The Combiner Neural Network Integration Strategy�

Both the Up and the Down NN are trained on a portion of the pattern set in a training window�

as described in Section �� Once trained� a second pass is made through all patterns in the training

window� with each pattern presented to both the Up and the Down NN and the corresponding

predictions are combined into a new two dimensional pattern� The result of this second pass is a

new set of two dimensional patterns� the cardinality of which is the same as the size of the training

window� which becomes the training set for the combiner NN�

Once the combiner NN is trained� the test pattern is presented to both the Up and the Down

NN and the resulting predictions are integrated by the combiner NN� which outputs the �nal return

prediction� Finally� the buy�sell recommendation is determined through the following algorithm�

a� If the predicted return obtained from the combiner NN is positive� a long position in the

market is established or maintained�

b� If the predicted return is negative� a short market position is established or maintained�
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Figure 
� The Combiner Neural Network with MACD Veri�cation Integration Strategy�

���� The Combiner Neural Network with MACD Veri�cation Integration Strategy

This strategy is an extension of the previous combiner NN strategy with the objective of reducing

the number of unpro�table trades� With this strategy� before a trade actually takes place the

recommended market position is veri�ed using the MACD indicator as shown in Figure 
� The

following algorithm computes the system buy�sell recommendation�

a� If the MACD recommended position agrees with the NN based combiner system recommen�

dation� the trade occurs and the market position changes�

b� If the MACD recommended position disagrees with the NN based combiner system recom�

mendation� the current market position is maintained�

It is important to note that the MACD indicator is only used to verify the trade action sug�

gested by the NN based combiner system� If the prediction from the combiner NN results in the

current market position being maintained� the MACD indicator is not checked� Consequently� this

technique reduces the number of trades recommended by the strategy proposed in Section ����
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S�P 
 index return
S�P 
 index return lagged one day
S�P 
 index return lagged two days
U�S Treasure Rate lagged � months
U�S Treasure Rate lagged � months
� Year Government Bond Rate

Table �� Features of Each Pattern�

�� Results and Analysis

���� Data Description

The system described in Sections �� �� �� and � is used for S�P 
 stock market trading� The

historic data used in this experiment is ordered daily �nancial time series patterns from the period

January �� ���� to December ��� ����� Patterns from January �� ���� to December ��� ����

comprised the initial training window� whereas actual predictions were made for patterns from

January �� ���� to December ��� ����� Table � shows the six features used in this study� These

features were selected using several statistical based selection techniques and criteria� with the

partial results combined using a ranking strategy� A discussion of the details involved in the

feature selection process can be found in �Chenoweth and Obradovic� ���
b��

���� Performance Measures

The most important criteria when measuring the performance of a stock market prediction model

is whether it will make money and how much� Therefore� the model�s annual rate of return �ARR�

is computed as follows

ARR �
k

n

nX
i��

ri�

where n is the total number of trading time units for the experiment� k is the number of trading

time units per year �i�e�� �
� for daily trading�� and ri is the rate of return for time unit i�
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The sum�
Pn

i�� ri� is computed by either adding or subtracting the actual daily returns for the

S�P 
 index� If the system recommends a long position� the actual return is added to the sum�

if a short position is recommended� the return is subtracted�

It is also important to minimize transaction costs by controlling excessive trading �i�e� a ��

return with 
 trades is more pro�table than a �� return with � trades�� Therefore the break

even transaction cost �BETC�� which may be viewed as the return per trade� is computed as follows�

BETC �
�

m

nX
i��

ri�

where m is the total number of trading transactions� while ri and n are de�ned as previously� A

trade is de�ned as any action that changes a market position� For example� exiting the market

constitutes a single trade �i�e� a buy trade to cover a short position or a sell trade to cover a long

position�� while switching from a short position to a long position constitutes two trades �i�e� one

buy trade to cover the short position and another buy to establish the long position�� Both the

ARR and BETC performance measures are used previously in �Chenoweth and Obradovic� ���
s�

���
b� in press� Hutchinson� ������

���� Directional Filtering Experiments

The Up and the Down NN use identical con�guration parameters �shown in Table �� determined

by trial and error� For the ADX based directional pattern �lter using the rule based integra�

Parameter Value

Activation Function Tangent Hyperbolic

Network Topology �����

Learning Rate ��

Tolerance ��

Number of Iterations 


Training Window Size �

Table �� Up and Down NN Con�guration Parameters�
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tion strategy� experiments were conducted for various values of the DI smoothing constant k��

the DX smoothing constant k�� and the �ltering threshold h� using the ADX��k�� k�� h�� and

ADX��k�� k�� h�� directional �lters� For all experiments� the decision threshold y for the rule based

strategy was varied from  to � in increments of ��� The experiments compared the ARR and the

number of trades using the ADX �lters versus the best values achieved using the threshold based

directional �lter� The best results for the threshold based �ltering system were obtained using a

�ltering threshold h� equal to �
�� This system achieved these results using a rule based decision

threshold value of �� �ARR equal to ����
� and the BETC equal to �
���� The return for the

buy and hold strategy for the period of this study was ���
��

Technical analysts �LeBeau and Lucas� ����� recommend using ADX���������
�� as their re�

sults over a variety of data sets indicate that these are the optimal parameter values for manual

trading strategies� Therefore� the initial �ltering experiments focused on using directional �lter

ADX���������
�� As can be seen from Figures � and 	� the ADX���������
� based system achieved

a smallerARR using more trades then the system employing the threshold based �ltering approach�

The best BETC achieved by the ADX���������
� based system was �
� and the best ARR was

��
���

Other technical analysts actually report using ADX smoothing parameters k� and k� in a range

of � to � days� In �Elder� ���� Elder suggests using Adx������� and so� our trading system

experiments shown in Figures � and � utilized direction �lter ADX����������� Experiments using

other values for h� were conducted� however h� equal to � achieved the best overall results� The

trading system using directional �lter ADX���������� performed better than the system using

ADX���������
�� However� both the best ARR ���
��� and BETC ������ were signi�cantly

smaller than the best results achieved by the threshold based �ltering system�

A major drawback when using the ADX for NN preprocessing is that the smoothing parameters
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introduce a lagging problem� This means that there is a delay between the actual beginning of a

trend and the moment the ADX identi�es it� This results in important patterns being excluded

from the NN training sets� To deal with this problem� the �nal set of data �ltering experiments

employed Adx������ which uses smaller smoothing parameters and as such reduces the lagging

problem� Technical analysts do not seem to be using such smoothing parameters� as they do not

remove enough of the minor market �uctuations� However� in our trading system ADX is used

for preprocessing� with predictions made by the NNs� which may be able to distinguish between

major trends and minor �uctuations in the market� Figures � and �� show the results obtained

using directional �lter ADX�������
�� The best ARR achieved using ADX�������
� was �������

which is signi�cantly better than the best ARR achieved using ADX���������
� or ADX���������
��

somewhat better than the ARR of the buy and hold strategy� and close to the best ARR achieved by

the system employing threshold based �ltering� However� this ARR was achieved with signi�cantly

more trades then the previous simple system ���� versus ��� trades�� Due to the large number of

trades� the BETC of the best ADX�������
� based system was only ����� which is smaller than

the BETC of the best ADX���������� based system� Additional experiments using directional

�lters ADX������h�� with various values for h�� and ADX�������
� resulted in a smaller ARR as

compared to the directional �lter ADX�������
�� and as such are not reported�

���� Return Integration Experiments

The next set of experiments used the ADX�������
� pattern �lter and varied the predicted return

integration process� For experiments utilizing the MACD indicator� the moving average values used

in the calculation of the Macd�ma�� ma�� and Signal�ma�� ma�� ma�� functions were ma� � ���

ma� � ��� and ma� � �� as recommended in �Elder� ������ The activation function� tolerance

and window size parameters used by the combiner NN were identical to those used for the Up and

��



Figure 	� Number of Trades Comparison Between the Threshold Based and ADX����� ��� �
� Based

Directional Filters�
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Figure �� Number of Trades Comparison Between the Threshold Based and the ADX����� ��� ��

Based Directional Filters�
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Figure ��� Number of Trades Comparison Between the Threshold Based and the ADX���� �� �
�

Based Directional Filters�
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the Down NN �shown in Table ��� However� the combiner network topology �������� the learning

rate ���� and the number of iterations ��� were modi�ed� Results of all experiments are

summarized in Table �� The �rst column in this table enumerates the systems tested in this section�

The next four columns �Rule� Vote� NN� MACD� identify the return integration strategy used �rule

based� voting� combiner NN� and combiner NN with MACD �lter� respectively�� A column marked

with an �X� speci�es that a particular integration strategy is used with a speci�c system� The

remaining columns show the experimental results for the speci�ed system�

As discussed in the previous section� System A employing the ADX �lter and rule based inte�

gration achieved an ARR of ������� which is better than the ARR for the buy and hold strategy�

However� this is achieved with a high number of trades ������ and consequently the BETC ����� of

this system is smaller than any other system except the one employing the voting based integration

strategy�

The voting based strategy employed by System B had poor results� with an ARR of ����� and

�� trades� This is likely due to the Up NN mostly voting to buy and the Down NN mostly voting to

sell� too often leaving the �nal buy�sell decision to the MACD indicator� Consequently the voting

method tended to follow trades based solely on the MACD� which by itself is a poor predictor

�ARR equal to �������

System C� employing the combiner NN integration strategy� outperformed System F using

the voting strategy and was comparable to the buy and hold strategy with an ARR of ������

In addition� System C had considerably fewer trades than System A� employing the rule based

integration strategy� resulting in a better BETC ���
 versus ����� These results indicate that

using an additional NN that acts as a combiner for the results of the Up and the Down NNs is an

e�ective strategy�

The best ARR ��
����� and BETC ������� were achieved by System D� employing the com�

��



System Return Integrator ARR BETC Trades

Rule Vote NN MACD

A X ����� ��� ���

B X ����� ��� ��

C X ���� ��
 �
�

D X ����� ���� ��

E MACD Only ���� ��� ���

F Threshold Filter� ����
 �
� ���
Rule Integration

G Buy and Hold ���
 � �

Table �� Return Integration Results�

biner NN with MACD veri�cation strategy� It is encouraging to note that this ARR is signi�cantly

better than the buy and hold ARR over the testing period� In addition� it is also signi�cantly

better than the ARR achieved by System F � which did not use technical indicators in either the

preprocessing or postprocessing phases� Comparing the results achieved by System D with those of

System C� it can be observed that the MACD �lter did reduce the number of unpro�table trades�

Not only did the ARR show signi�cant improvement ��
���� versus ������� but the number of

trades was dramatically reduced �
� versus �
���

�� Conclusions and Future Research

The �rst objective of the study was to compare a NN based trading system using a threshold based

pattern �ltering technique to a system using a more sophisticated preprocessing technique utilizing

the ADX indicator to identify trends in the S�P 
 index� The results indicated that the ADX

based directional �lter used for preprocessing works better with smaller ADX smoothing parameter

values� However� the simple threshold based �ltering technique still outperforms the ADX based

�ltering technique with the rule based integration strategy� We believe this is due to the ADX�s

inability to adjust quickly to sudden changes in the market�s direction taking the form of a spike�

��



even for small smoothing parameter values� This problem is particularly evident in markets with a

downward trend� Still� the annual rate of return obtained utilizing the ADX based �lter ��������

is encouraging considering the very high number of trades involved ���� trades in ���	� days�� As

seen from the results for System D �Table ��� the development of a postprocessing technique that

removes a portion of the unpro�table trades could potentially lead to signi�cantly higher returns�

The second objective was to explore if embedding technical analysis knowledge in the postpro�

cessing phase would result in better buy�sell recommendations� The use of the MACD indicator

to resolve con�icts between the predictions of the Up and Down NNs �i�e� the voting integration

strategy� gave unsatisfactory results� This is due to the Up NN mostly voting to buy and the Down

NN mostly voting to sell� too often leaving the �nal buy�sell decision to the MACD indicator� The

MACD indicator su�ers from the same inability to react quickly to sudden changes as the ADX

indicator previously discussed� making the voting strategy inappropriate� However� promising re�

sults were obtained using the MACD indicator as a postprocessing �lter to a system utilizing an

additional NN to combine the Up and the Down NN predictions� The MACD �lter successfully

increased the system annual rate of return ��
���� vs� ������ and reduced the number of trades

�
� vs� �
��� resulting in a signi�cant increase in the return per trade �BETC of ���� vs� ��
��

To summarize� the study provides evidence that embedding some form of technical analysis

knowledge into a neural network based trading system can improve its predictive capabilities� It

is important to observe that in a neural network based trading system� technical indicators may

be incorporated in a novel and potentially bene�cial manner� For example� this study used the

MACD indicator as a �lter rather than as a timing mechanism� which is its more traditional usage�

In addition� the ADX indicator is not commonly used with smoothing parameter values as small as

those utilized in several experiments in this study� However� these small values were employed in the

system giving the best overall results� Another important observation is that the object of this study

�




was to explore if technical analysis knowledge can improve the system performance� Consequently�

further research is needed to determine which technical indicators are most appropriate� Additional

research is also needed to explore other methods for embedding technical analysis knowledge into

neural network based trading systems� Inspired by encouraging results in other domains �Fletcher

and Obradovic� ����� in press� Romero and Obradovic� ���
�� we are currently exploring how to

combine market information obtained from various technical indicators and utilize it as a prior

knowledge for creating a market speci�c neural network through constructive learning�
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